Method of equivalent strength conditions in calculations of bodies with inhomogeneos regular structure

Автор: А. D. Matveev

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Informatics, computer technology and management

Статья в выпуске: 4 vol.21, 2020 года.

Бесплатный доступ

Plates, beams and shells with a non-uniform and micro-uniform regular structure are widely used in aviation and rocket and space technology. In calculating the strength of elastic composite structures using the finite element method (FEM) it is important to know the error of the approximate solution for finding where you need to build a sequence of approximate solutions that is connected with the procedure of crushing discrete models. Implementation of the procedure for grinding (within the micro-pass) discrete models of composite structures (bodies) requires large computer resources, especially for discrete models with a microinhomogeneous structure. In this paper, we propose a method of equivalent strength conditions (MESC) for calculating elastic bodies static strength with inhomogeneous and microinhomogeneous regular structures, which is implemented via FEM using multigrid finite elements. The calculation of composite bodies’ strength according to MESC is limited to the calculation of elastic isotropic homogeneous bodies strength using equivalent strength conditions, which are determined based on the strength conditions set for composite bodies. The MESC is based on the following statement. For all composite bodies V0 , which are such a homogeneous isotropic body V b and the number of p , if the safety factor nb of the body Vb satisfies the equivalent conditions of strength 2 pn1(1 ) nb (1 ) pn2 (1 ) , the safety factor n0 of the body V0 meets the defined criteria for strength n1 n0 n2 , where n1 , n2 specified, the safety factor n0 ( nb ) complies with the accurate (approximate) solution of elasticity theory problem is built for body V0 (body Vb ); (n2 n1) / (n2 n1) ; is the upper b error estimation of the maximum equivalent body stress V b , corresponding to approximate solution. When constructing equivalent strength conditions, i. e when finding the equivalence p coefficient, a system of discrete models is used, dimensions of which are smaller than the dimensions of the basic composite bodies models. The implementation of MESC requires small computer resources and does not use procedures for grinding composite discrete models. Strength calculations for bodies with a microinhomogeneous structure using MESC show its high efficiency. The main procedures for implementing the MESC are briefly described.

Еще

Elasticity, composites, equivalent strength conditions, multigrid finite elements, plates, beams, shells.

Короткий адрес: https://sciup.org/148321772

IDR: 148321772   |   DOI: 10.31772/2587-6066-2020-21-4-483-491

Список литературы Method of equivalent strength conditions in calculations of bodies with inhomogeneos regular structure

  • Pisarenko G. S., Yakovlev A. P., Matveev V. V. Spravochnik po soprotivleniyu materialov [Handbook of resistance materials']. Kiev, Nauk. Dumka Publ., 1975, 704 p.
  • Birger I. A., Shorr B. F., Iosilevich G. B. Raschet na prochnost' detalej mashin [Calculation of the strength of machine parts]. Moscow, Mashinostroenie Publ., 1993, 640 p.
  • Moskvichev V. V. Osnovy konstrukcionnoj prochnosti tekhnicheskih sistem i inzhenernyh sooruzhenij [Fundamentals of structural strength of technical systems and engineering structures]. Novosibirsk, Nauka Publ., 2002, 106 p.
  • Matveev A. D. [Calculation of elastic structures using the adjusted terms of strength]. Izvestiya AltGU. 2017, No. 4, P. 116–119 (In Russ.). Doi: 10.14258/izvasu(2017)4-21.
  • Norri D., de Friz Zh. Vvedenie v metod konechnykh elementov [Introduction to the finite element method]. Moscow, Mir Publ., 1981, 304 p.
  • Zenkevich O. Metod konechnykh elementov v tekhnike [Finite element method in engineering]. Moscow, Mir Publ., 1975, 544 p.
  • Fudzii T., Dzako M. Mekhanika razrusheniya kompozicionnyh materialov [Fracture mechanics of composite materials]. Moscow, Mir Publ., 1982.
  • Matveev A. D. [The method of multigrid finite elements in the calculations of three-dimensional homogeneous and composite bodies]. Uchen. zap. Kazan. un-ta. Seriia: Fiz.-matem. Nauki. 2016, Vol. 158, No. 4, P. 530–543 (In Russ.).
  • Matveev A. D. [Multigrid method for finite elements in the analysis of composite plates and beams]. Vestnik KrasGAU. 2016, No. 12, P. 93–100 (In Russ.).
  • Matveev A. D. Multigrid finite element method in stress of three-dimensional elastic bodies of heterogeneous structure. IOP Conf, Ser.: Mater. Sci. Eng. 2016, Vol. 158, No. 1, Art. 012067, P. 1–9.
  • Matveev A. D. [Multigrid finite element Method in the calculations of composite plates and beams of irregular shape]. The Bulletin of KrasGAU. 2017, No. 11, P. 131–140 (In Russ.).
  • Matveev A. D. [Multigrid finite element Method]. The Bulletin of KrasGAU. 2018, No. 2, P. 90–103 (In Russ.).
  • Matveev A. D. [The method of. multigrid finite elements of the composite rotational and bi-curved shell calculations]. The Bulletin of KrasGAU. 2018. No. 3, P. 126–137 (In Russ.).
  • Matveev A. D. [Method of. multigrid finite elements to solve physical boundary value problems]. Ministry of information technologies and mathematical modeling. Krasnoyarsk, 2017, P. 27–60.
  • Matveev A. D. [Some approaches of designing elastic multigrid finite elements]. VINITI Proceedings. 2000, No. 2990-B00, P. 30 (In Russ.).
  • Matveev A. D. [Multigrid modeling of composites of irregular structure with a small filling ratio]. J. Appl. Mech. Tech. Phys. 2004, No. 3, P. 161–171 (In Russ.).
  • Matveev A. D., Grishanov A. N. [Single- and double-grid curvilinear elements of three-dimensional cylindrical panels and shells]. Izvestiya AltGU. 2014, No. 1/1. P. 84–89 (In Russ.).
  • Matveev A. D., Grishanov A. N. [Multigrid curvilinear elements in three-dimensional analysis of cylindrical composite panels with cavities and holes]. Proceedings of Kazan University. 2014, Vol. 156, No. 4, P. 47–59 (In Russ.).
  • Matveev A. D., Grishanov A. N. [Threedimensional Composite Multigrid Finite Shell-Type Elements]. Izvestiya AltGU. 2017, No. 4/1, P. 120–125 (In Russ.).
  • Matveev A. D. [The construction of complex multigrid finite element heterogeneous and microinhomogeneities in structure]. Izvestiya AltGU. 2014, No. 1/1, P. 80–83(In Russ.). Doi: 10.14258/izvasu(2014)1.1-18.
  • Matveev A. D. [Method of generating finite elements]. The Bulletin of KrasGAU. 2018, No. 6, P. 141–154 (In Russ.).
  • Matveev A. D. [Construction of multigrid finite elements to calculate shells, plates and beams based on generating finite elements]. PNRPU Mechanics Bulletin. 2019, No. 3, P. 48–57 (In Russ.). Doi: 10/15593/perm.mech/2019.3.05.
  • Matveev A. D. [Calculation of the strength of composite structures using equivalent strength conditions]. The Bulletin of KrasGAU. 2014, No. 11, P. 68–79 (In Russ.).
  • Matveev A. D. [The method of equivalent strength conditions in calculating composite structures regular structure using multigrid finite elements]. Siberian Journal of Science and Technology. 2019, Vol. 20, No. 4, P. 423–435 (In Russ.). Doi: 10.31772/2587-6066-2019-20-4-423-435.
  • Samul' V. I. Osnovy teorii uprugosti i plastichnosti [Fundamentals of the theory of elasticity and plasticity]. Moscow, Vysshaia shkola Publ., 1982, 264 p.
  • Golushko S. K., Nemirovskii Iu. V. Priamye i obratnye zadachi mekhaniki uprugikh kompozitnykh plastin i obolochek vrashcheniia [Direct and inverse problems of mechanics of elastic composite plates and shells of rotation]. Moscow, FIZMATLIT Publ., 2008, 432 p.
Еще
Статья научная