Methodological principles of space vehicle design for the maximum energy supply of the payload
Автор: Chebotarev V.E., Fatkulin R.F., Vorontsova E.O., Shangina E.A., Balandina T.N.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Aviation and spacecraft engineering
Статья в выпуске: 1 vol.23, 2022 года.
Бесплатный доступ
The design of spacecraft at the initial stages is carried out in the presence of uncertainties in terms of parameters and conditions. The determination of design parameters is performed step by step: determination of the nominal values of design parameters, normalization of resource reserves (mass, volume, energy consumption) according to the design parameters to parry uncertainties, designing spacecraft for marginal resources. The operation of spacecraft with an electrical load switched on includes several stages: launching into the target orbit, putting into regular operation, regular operation for the intended purpose, decommissioning from the intended use in case of emergencies. The power supply system is designed to provide uninterrupted autonomous power supply to the onboard equipment in all modes and at all stages during the period of active existence of spacecraft, taking into account the presence of shadow zones of the orbit from the Earth and the Moon. In this article, the methodological principles for designing spacecraft for the maximum power supply of payload in the presence of uncertainties in parameters and conditions are developed. The mathematical models for calculating the parameters of the energy balance of spacecraft have been developed for various options for realizing the power of the session load, depending on the level of illumination of the orbit and the period of operation of spacecraft. The effectiveness of using the methodological principles of designing spacecraft for the maximum power supply of the payload, depending on the level of illumination of the orbit and the period of operation of spacecraft, has been evaluated. A technique has been developed for rationing reserves by spacecraft energy resources to parry uncertainties in terms of parameters and conditions, as well as the principles of its application when designing spacecraft for maximum payload power supply.
Spacecraft, payload, energy balance, shadow zones of the orbit, methodology for evaluating efficiency
Короткий адрес: https://sciup.org/148329613
IDR: 148329613 | DOI: 10.31772/2712-8970-2022-23-1-116-127
Список литературы Methodological principles of space vehicle design for the maximum energy supply of the payload
- Chebotarev V. E., Kosenko V. E. Osnovy proektirovaniya kosmicheskikh apparatov informatsionnogo obespecheniya [Fundamentals of spacecraft design information support]. Krasnoyarsk, 2011, 488 p.
- Lukyanenko M. V., Lukyanenko M. M., Lovchikov A. N., Bazilevsky A. B. Istochniki energii sistem elektrosnabzheniya kosmicheskikh apparatov [Energy sources of spacecraft power supply systems]. Krasnoyarsk, 2008, 176 p.
- Wentzel E. S. Issledovaniye operatsiy. Zadachi, printsipy, metodologiya [Operations Research. Tasks, principles, methodology]. Moscow, Nauka Publ., 1988, 208 p.
- Ilyichev A. V., Volkov V. D., Grushinsky V. A. Effektivnost’ proyektiruyemykh elementov slozhnykh system [Efficiency of designed elements of complex systems]. Moscow, Vysshaya shkola Publ., 1982, 280 p.
- Rozanov Y. A. Sluchaynyye protsessy [Random processes]. Moskow, Nauka Publ., 1979, 184 p.
- Tarakanov K. V., Ovcharov L. A, Tyryshkin A. N. Analiticheskiye metody issledovaniya system [Analytical methods for studying systems]. Moscow, Sov. Radio Publ., 1974, 240 p.
- Chernyavsky G. M. Orbity sputnikov svyazi [Orbits of communication satellites]. Moscow, Svyaz’ Publ, 1978, 240 p.
- Perova A. I., Kharisova V. N. GLONASS. Printsipy postroyeniya i funktsionirovaniya [GLONASS. Principles of construction and functioning]. Moscow, Radiotekhnika Publ., 2010, 800 p.
- Chebotarev V. E., Vorontsova E. O. [A technique for providing energy resources to a circumlunar satellite for passing shadow zones of long duration]. Kosmicheskiye apparaty i tekhnologii. 2020, No. 4, P. 233–240 (In Russ.).
- Chebotarev V. E., Vorontsova E. O., Sidorova E. A. [Modeling of Shadow Zones in Circumlunar Orbits and Peculiarities of Calculating the Parameters of Power Supply and Thermal Control Systems of a Circumlunar Spacecraft]. Reshetnevkiye chteniya. 2020. P. 49–51 (In Russ.).
- Chebotarev V. E., Vorontsova E. O. [Method for calculating the design parameters of the power supply system of a circumlunar spacecraft]. 25-ya Mezhdunarodnaya konferentsiya “Sistemnyy analiz, upravleniye i navigatsiya”, 2021, P. 150–152 (In Russ.).
- Fortexue P., Swinerd G., Stark D. Razrabotka sistem kosmicheskikh apparatov [Development of spacecraft systems]. Moscow, Al’pina Pabl., 2015, 756 p.
- Tumanov A. V., Zelentsov V. V, Shcheglov G. A. Osnovi komponovki bortovogo oborudovaniya kosmicheskih apparatov [Foundations of layout of on-Board equipment of spacecraft]. Moscow, Bauman MSTU Publ., 2010, 136 p. (In Russ.).
- Eliasberg P. E. Vvedenie v teoriyu poleta iskusstvennogo sputnika Zemli [Introduction in the theory of flight of the artificial companion of the earth]. Moscow, Librikom Publ., 2011, 544 p.
- Kosenko V. E., Zvonar V. D., Chebotarev V. E. [Lunar information and navigation support system]. Aktual’nye voprosy proektirovaniya AKA dlya fundamental’nyh i prikladnyh nauchnyh issledovanij [Actual problems of AKA design for fundamental and applied scientific research]. Khimki, FSUE S. A. Lavochkina Publ., 2015, P. 323–329 (In Russ.)