Methods for assessing the state of snow-ice cover

Автор: Mashkov Viktor G., Malyshev Vladimir A., Fedyunin Pavel A.

Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu

Статья в выпуске: 3 т.14, 2021 года.

Бесплатный доступ

The development new methods for measuring the electrophysical and geometric parameters multilayer dielectric medium in order to identify their layers, as well as to detect inhomogeneities in them, is an urgent scientific task. Methods for assessing the state the snow-ice cover are proposed, based on the identification layers of the snow-ice cover by the dielectric permittivity obtained indirectly as a result inclined sounding of the underlying surface by an electromagnetic wave with vertical and horizontal polarization. Under normal sensing the underlying surface, in the form snow-ice cover, by radio waves with vertical and horizontal polarization, the obtained values the reflection coefficient from the boundary layers the received signals are identical. Oblique sensing by a vertically polarized wave in the range from 25 to 90 degrees leads to a sharp dip in the values the reflection coefficient from the boundary layers at certain angles, so for dry snow - 47…55°, dry firn - 55 … 58° and dry ice - 58…61°. These angles characterize the dielectric properties the layers (permittivity), which are explained by the complete polarization the reflected wave in a plane perpendicular to the plane incidence, since at this moment the vibrations the layer's electrons along the direction their movement do not lead to the emission electromagnetic waves in the direction the reflected wave (absent). The given estimated values the complex relative permittivity snow-ice cover as two component medium air and ice at a temperature from minus one to minus forty degrees, or three component medium air, ice and water at zero temperature are a sample for establishing the identity the characteristic properties layers. The purpose this article is to develop methods for assessing the state snow-ice cover used in determining the possibility performing a safe landing a helicopter - type aircraft on an unprepared site with snow-ice cover based on the identification the obtained characteristics snow-ice cover layers based on the results radar sensing with calculated data.

Еще

State snow-ice cover, underlying surface, permittivity, layer identification, oblique sensing

Короткий адрес: https://sciup.org/146282224

IDR: 146282224   |   DOI: 10.17516/1999-494X-0312

Список литературы Methods for assessing the state of snow-ice cover

  • Mashkov V. G., Malyshev V. A. Sposob vibora ploshadki dly posadki vozdushnogo sudna vertoletnogo tipa [Method for selecting a landing site for a helicopter-type aircraft]. Patent RF, no. 2707275 G01S 13/94. Publ. 26.11.2019. (In Russ.)
  • Mashkov V. G., Malyshev V. A., Prohorskiy R. A. Sposob ocenki vozmozhnosti posadki vozdushnogo sudna vertoletnogo tipa na vodoem so snezhno-ledyanym pokrovom [Method for assessing the possibility of landing a helicopter-type aircraft on a body of water with snow and ice cover] Patent RF, no. 2737761 G01S 13/94. Publ. 02.12.2020. (In Russ.)
  • Finkel'shtejn M. I., Lazarev E. I., CHizhov A. N. Radiolo-kacionnye aeroledomernye s'emki rek, ozer, vodohranilishch. L., Gidrometeoizdat, 1984, 112 p. (In Russ.)
  • Kanarejkin D. B., Pavlov N. F., Potekhin V. A. Poly-arizaciya radiolokacionnyh signalov. Ed. V. E. Dulevicha. M., Sov. radio, 1966, 440 p. (In Russ.)
  • Mashkov V. G., Malyshev V. A. Model helicopter-type aircraft landing control on an unprepared snow-covered area. Modeling, optimization and information technology. 2019, no. 4 (27), pp. 1-10. doi: 10.26102/23106018/2019.27.4.037 (In Russ.)
  • Malyshev V. A., Mashkov V. G. The speed electromagnetic wave propagation in the snow-ice underlying surface. Radioengineering. 2020, vol. 84, no. 3 (5), pp. 4054. doi: 10.18127/j00338486-202003(05)-05 (In Russ.)
  • Mashkov V. G., Malyshev V. A. Model for controlling the landing of a helicopter-type aircraft on a reservoir with snow and ice cover. Modelirovanie, optimizaciya i in-formacionnye tekhnologii [Modeling, optimization and information technology]. 2020, no. 3 (30), pp. 1-9. doi: 10.26102/2310-6018/2020.30.3.017 (In Russ.)
  • Shoshin E. L., Suchanek A. M., Plyusnin I. I. Sposob izmereniya tolshchiny snezhnogo pokrova [The method of measuring the snow cover thickness]. Patent RF, no. 2262718. Publ. 20.10.2005. (In Russ.)
  • Shostak A. S., Zagoskin V. V., Lukyanov S. P., Karaush A. S. O vozmozhnosti opredeleniya dielektricheskoj pronicaemosti verhnih sloev podstilayushchih sred po izme-rennym koefficientam otrazheniya pri naklonnom zondi-rovanii ploskimi volnami vertikal'noj i gorizontal'noj poly-arizacii v SVCH diapazone // ZHurnal radioelektroniki [Radio electronics magazine]. 1999, no. 11. Available at: http://jre.cplire.ru/mac/nov99/4/abstract.html (date accessed 07.12.2017) (In Russ.)
  • Valeev G. G. Sposob izmereniya otnositel'noj kom-pleksnoj dielektricheskoj pronicaemosti materiala s po-teryami v SVCH diapazone [Method for measuring the relative complex permittivity of a material with losses in the microwave range]. Patent RF, no. 2613810. Publ. 21.03.2017. (In Russ.)
  • Zapevalov A. S. Sposob distancionnogo opredeleniya otnositel'noj dielektricheskoj pronicaemosti sredy pod granicej atmosfera-okean [Method for remote determination of the relative permittivity the medium under the atmosphere-ocean boundary]. Patent RF, no. 2623668. Publ. 28.06.2017. (In Russ.)
  • Kotlyakov V. M., Macheret Yu. Ya., Sosnovsky A. V., Gla-zovsky A. F. Speed of radio waves propagation in dry and wet snow cover. Led i sneg [Ice and Snow]. 2017, no. 57, iss. 1, pp. 45-56. doi: 10.15356/2076-6734-2017-1 -45-56 (In Russ.)
  • Sudarsan Krishnan B. E. Modeling and simulation analysis of an FMCW radar for measuring snow thickness. Electronics and communication engineering. University of Madras, 2000, 84 p.
  • Kupryashkin I. F., Likhachev, V. P., Rya-zantsev L. B. Malogabaritnye mnogofunkcional'nye RLS s nepreryvnym chastotno-modulirovannym izlucheniem [Small-sized multifunctional radars with continuous frequency-modulated radiation]. M., Radiotekhnika, 2020, 288 p. doi: 10.18127/B9785931081915 (In Russ.)
  • Grinev A. Yu., Temchenko V. S., Bagno D. V. Radary podpoverhnostnogo zondirovaniya. Monitoring i diagnostika sred i ob'ektov [Subsurface sensing radars. Monitoring and diagnostics among objects]. M., Radiotekhnika, 2013, 392 p. (In Russ.)
  • Macheret Yu. Ya. Estimation of water content in glaciers by hyperbolic reflections. Materialy glyaciolog-icheskih issledovanij [Materials of glaciological research]. 2000, no. 89, pp. 3-10. (In Russ.)
  • Glazovsky A. F., Macheret Y. Ya. Voda v lednikah. Metody i rezul'taty geofizicheskih i distancionnyh issledovanij. [Water in glaciers. Methods and results of geophysical and remote sensing studies]. M., GEOS, 2014, 528 p. (In Russ.)
  • Macheret Yu. Ya., Glazovsky A. F. Estimation of absolute water content in Spitsbergen glaciers from radar sounding data. Polar Research. 2000, vol. 19, iss. 2, pp. 205-216. doi: 10.3402/polar.v19i2.6546
  • Macheret Yu. Ya. Radiozondirovanie lednikov. [Radioecho sounding of glaciers]. RAN, Institute of geography. M., Scientific World, 2006, 389 p. (In Russ.)
Еще
Статья научная