Methods for preventing ferrocene catalyst migration into solid fuels
Автор: Khabrat Ghulam R., Puzin Yuri I.
Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu
Рубрика: Исследования. Проектирование. Опыт эксплуатации
Статья в выпуске: 7 т.17, 2024 года.
Бесплатный доступ
Ferrocene compounds are among the most common solid fuel combustion speed catalysts, which have attracted the attention of scientists due to better combustion speed, ease of production, purity percentage and high efficiency. Due to their high migration, the main problem of these compounds is their migration during storage, which can reduce engine performance and cause subsequent risks. Various methods have been proposed to solve this problem, including branching, adding active groups and creating bulky compounds or strengthening intermolecular bonds, polymerization, excessive branching, etc., due to the high importance of the migration phenomenon. In the exploitation of solid fuels, this article introduces ferrocene-based combustion rate catalysts and briefly reviews methods to prevent their migration.
Ferrocene catalysts, combustion rate, solid fuel, ferrocene compounds, migration
Короткий адрес: https://sciup.org/146282956
IDR: 146282956
Список литературы Methods for preventing ferrocene catalyst migration into solid fuels
- Sutton G.P., Biblarz O. Rocket Propulsion Elements. Wiley, 2016.
- Abdin Z. U., Yu H., Wang L., Saleem M., Khalid H., Abbasi N. M. & Akram M. Synthesis, anti‐migration and burning rate catalytic mechanism of ferrocene‐based compounds. Applied Organometallic Chemistry, 2014, 28(8), 567–575. DOI: 10.1002/aoc.3166.
- Sharma J. K., Srivastava P. & Singh G. Nanocatalysts: Potential burning rate modifier for composite solid propellants. Materials Focus, 2014, 3(2), 81–91. DOI: org/10.1166/mat.2014.1154
- Gao X., Li J., Luo Y., Li C., Bi F., Zhang W. & Gao Z. Ionic ferrocenyl compounds containing polycyano anions. Synthesis, structures, and effects on thermal decomposition of core components of solid propellants. Zeitschrift für anorganische und allgemeine Chemie, 2015, 641(2), 475–482. DOI: 10.1002/zaac.201400467
- Jiang B., Zhang W., Yang J., Yu Y., Bao T. & Zhou X. Low‐Temperature Oxidation of Catocene and Its Influence on the Mechanical Sensitivities of a Fine‐AP/Catocene Mixture. Propellants, Explosives, Pyrotechnics, 2015, 40(6), 854–859. DOI: 10.1002/prep.201500099
- Zhuo J. B., Li H. D., Lin C. X., Xie L. L., Bai S. & Yuan Y. F. Ferrocene-based sulfonyl dihydropyrazole derivatives: Synthesis, structure, electrochemistry and effect on thermal decomposition of NH4ClO4. Journal of Molecular Structure, 2014, 1067, 112–119.
- Zhuo J. B., Li H. D., Lin C. X., Xie L. L., Bai S. & Yuan Y. F. Ferrocene-based sulfonyl dihydropyrazole derivatives: Synthesis, structure, electrochemistry and effect on thermal decomposition of NH4ClO4. Journal of Molecular Structure, 2014, 1067, 112–119.
- Tong R., Zhao Y., Wang L., Yu H., Ren F., Saleem M. & Amer W. A. Recent research progress in the synthesis and properties of burning rate catalysts based on ferrocene- containing polymers and derivatives. Journal of Organometallic Chemistry, 2014, 755, 16–32.
- Wang L., Yu H., Saleem M., Akram M., Abbasi N. M., Khalid H. & Chen Y. Ferrocene-based polyethylene imines for burning rate catalysts. New Journal of Chemistry, 2016, 40(4), 3155–3163. DOI: 10.1039/x0xx00000x
- Liu X., Zhang W., Zhang G. & Gao Z. Low-migratory ionic ferrocene-based burning rate catalysts with high combustion catalytic efficiency. New Journal of Chemistry, 2015, 39(1), 155–162. DOI: 10.1039/C 4NJ01216J
- Liu X., Li J., Bi F., Zhang W., Zhang G. & Gao Z. Ionic Ferrocene‐Based Burning‐Rate Catalysts with Polycyano Anions: Synthesis, Structural Characterization, Migration, and Catalytic Effects during Combustion. European Journal of Inorganic Chemistry, 2015 (9), 1496–1504. DOI:10.1002/ejic.201403023
- Gore G. M., Bhatewara R. G., Tipare K. R., Nazare A. N. & Asthana S. N. Studies on Ferrocene PolyGlycol Oligomer – Burning Rate Modifier for Composite Propellants. Journal of propulsion and power, 2004, 20(4), 758–760. doi.org/10.2514/1.11460
- Gao Y., Li H. D., Ke C. F., Xie L. L., Wei B. & Yuan Y. F. Synthesis of dihydropyrazole‐bridged dinuclear ferrocenyl derivatives and their catalytic effect on thermal decomposition of ammonium perchlorate. Applied Organometallic Chemistry, 2011, 25(6), 407–411. DOI 10.1002/aoc.1774
- Liu L. L., He G. Q., Wang Y. H. & Liu P. J. Effect of catocene on the thermal decomposition of ammonium perchlorate and octogen. Journal of Thermal Analysis and Calorimetry, 2014, 117, 621–628. DOI 10.1007/s10973–014–3792–5
- Çikalin S. A. «Synthesis of Ferrocenyl Quinones and Ferrocenyl Based Burning Rate Catalysts.» M. S. Thesis Chemistry, The Middle East Technical University, 2003.
- Gore G. M., Tipare K. R., Bhatewara R. G., Prasad U. S., Gupta, M. & Mane S. K. Evaluation of ferrocene derivatives as burn rate modifiers in AP/HTPB‑based composite propellants. Defence Science Journal, 1999, 49(2), 151–158
- Kay K. Y., Kim L. H. & Oh I. C. The first methano-bridged diferrocenyl fullerene (C 60). Tetrahedron Letters, 2000, 41(9), 1397–1400.
- Wang H., Zhao F. Q., Li S. W. & Gao H. Function of carbon materials used in solid propellants and their action mechanism. Chinese Journal of Explosives and Propellants, 2006, 29(4), 32. doi:10.1088/1742–6596/2021/1/012018
- Takahashi S. & Anzai J. I. Recent progress in ferrocene-modified thin films and nanoparticles for biosensors. Materials, 2013, 6(12), 5742–5762. doi.org/10.3390/ma6125742
- Vuga S. M. Effects of liquid burn rate catalysts on Rheological Properties of High‐Energy Composite Propellants. Propellants, explosives, pyrotechnics, 1991, 16(6), 293–298. doi.org/10.1002/prep.19910160607
- Nguyen T. T. The effects of ferrocenic and carborane derivative burn rate catalysts in AP composite propellant combustion: mechanism of ferrocene-catalysed combustion. DSTO Aeronautical and Maritime Research Laboratory. 1995, 39
- Nguyen T. T. New Insights into the Combustion of AP/HTPB Rocket Propellents: The Catalyst Active Sites and a Combustion Flame Model for The Ferrocene-Catalysed Combustion. International Journal of Energetic Materials and Chemical Propulsion, 1997, 4(1–6). DOI: 10.1615/IntJEnergeticMaterialsChemProp.v4.i1–6.640
- Xiao F., Feng F., Li L. & Zhang D. Investigation on ultraviolet absorption properties, migration, and catalytic performances of ferrocene‐modified hyper‐branched polyesters. Propellants, Explosives, Pyrotechnics, 2013, 38(3), 358–365. DOI: 10.1002/prep.201200126
- Ghosh K., Behera S., Kumar A., Padale B. G., Deshpande D. G., Kumar A. & Gupta M. Studies on Aluminized, high burning rate, Butacene® based, composite propellants. Central European Journal of Energetic Materials, 2014, 11(3), 323–333.
- Cho B. S. & Noh S. T. Synthesis and thermal properties of ferrocene-modified poly (epichlorohydrin-co‑2-(methoxymethyl) oxirane). Macromolecular Research, 2013, 21, 221–227. DOI 10.1007/s13233–013–1074-x.
- Xiao F. J. & Luo Y. J. Ferrocene containing hyperbranched polyester: Structure and catalytic performance for thermal decomposition of ammonium perchlorate. Advanced Materials Research, 2011, 197, 1225–1230. doi.org/10.4028/www.scientific.
- Xiao F., Yu X., Feng F., Sun X., Wu X. & Luo Y. Investigation of the redox property, migration and catalytic performance of ferrocene-modified hyperbranched poly (amine) ester. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 315–324. DOI 10.1007/s10904–012–9778–5
- Fengjuan X., Minmei S., Lei P., Yunjun L. & Junchai Z. Ferrocene end-cap hyperbranched poly (amine-ester): structure and catalytic performance for thermal decomposition of ammonium perchlorate. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 175–181. DOI 10.1007/s10904–010–9428–8
- Amin B. U., Yu H., Wang L., Fahad S., Nazir A., Haq F. & Liang R. Synthesis and anti-migration studies of ferrocene-based amides as burning rate catalysts. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 2511–2520. doi.org/10.1007/s10904–020–01861–7
- Zhao H., Guo L., Chen S. & Bian Z. Synthesis, complexation of 1, 2, 3-(NH)- triazolylferrocene derivatives and their catalytic effect on thermal decomposition of ammonium perchlorate. RSC advances, 2013, 3(43), 19929–19932. doi.org/10.1039/C 3RA43117G
- Gao Y., Li H., Ke C., Xie L. & Yuan Y. Design and synthesis of combustion catalysts bearing nitrogenous heterocyclic polynuclear ferrocenyl derivatives. Chem Propellants Polym Mater, 2010, 8, 34–7. doi.org/10.1080/10406638.2023.2167215
- Lai Zheng-Mao, Hong-Min Ye, Qian Wan, Li-Li Xie, Sha Bai and Yao-Feng Yuan. «Synthesis, crystal structure and properties of benzimidazole-bridged dinuclear ferrocenyl derivatives.» Journal of Molecular Structure, 2014, 1059, 33–39.
- Gao Y., Li H. D., Ke C. F., Xie L. L., Wei B. & Yuan Y. F. Synthesis of dihydropyrazole‐bridged dinuclear ferrocenyl derivatives and their catalytic effect on thermal decomposition of ammonium perchlorate. Applied Organometallic Chemistry, 2011, 25(6), 407–411. DOI 10.1002/aoc.1774.
- Cheng Z., Zhang G., Fan X., Bi F., Zhao F., Zhang W. & Gao Z. Synthesis, characterization, migration and catalytic effects of energetic ionic ferrocene compounds on thermal decomposition of main components of solid propellants. Inorganica Chimica Acta, 2014, 421, 191–199.
- Pavase T. R., Lin H., Hussain S., Li Z., Ahmed I., Lv L. & Kalhoro M. T. Recent advances of conjugated polymer (CP) nanocomposite-based chemical sensors and their applications in food spoilage detection: A comprehensive review. Sensors and Actuators B: Chemical, 2018, 273, 1113–1138