A method for analyzing complex structured data with elements of machine learning
Автор: Mandrikova Bogdana Sergeevna
Журнал: Компьютерная оптика @computer-optics
Рубрика: Численные методы и анализ данных
Статья в выпуске: 3 т.46, 2022 года.
Бесплатный доступ
A method for analyzing data of complex structure based on combining a wavelet transform and neural networks Autoencoder is proposed. The method allows you to research the data structure, detect abnormal changes of various shapes and durations, and suppress noise. The efficiency of the method is shown on the example of data from a network of neutron monitor stations. Neutron monitor data determine the intensity of secondary cosmic rays and are one of the key factors in space weather. The numerical implementation of the method allows it to be applied on-line, which is of interest in problems of analyzing environmental data and detecting catastrophic events.
Data analysis, data of complex structure, wavelet transform, neural networks, neutron monitors
Короткий адрес: https://sciup.org/140295004
IDR: 140295004 | DOI: 10.18287/2412-6179-CO-1088