Plant (subsystem) state control at incomplete measurement information on the parameter set determining its dynamics. II. Feedback-based neural networks (recurrent networks) representing the input information dynamics
Автор: Malykhina G.F., Merkusheva A.V.
Журнал: Научное приборостроение @nauchnoe-priborostroenie
Рубрика: Обзоры
Статья в выпуске: 3 т.14, 2004 года.
Бесплатный доступ
In information-measurement systems (IMS) and information-control systems representing the state of the plant (subsystem) being controlled, there exist problems that arise in conditions when some state parameters have no effect on subsystem measuring sensors, i. e. in conditions of incomplete information. This problem is solved based on analysis of the plant-IMS system dynamics equation (in the state parameters space), and neural network (NN) algorithms. The second (of three) paper parts considers the structure and learning algorithms for feedback-based NN called recurrent NN, which adequately simulate the input data dynamics.
Короткий адрес: https://sciup.org/14264343
IDR: 14264343