Метод мультиверсионного программирования для обработки телеметрической информации малых космических аппаратов

Бесплатный доступ

Программное обеспечение является ключевым элементом, обеспечивающим функционирование любой современной сложной технической системы. Одной из таких систем являются группировки космических аппаратов и связанные с ними комплексы наземного управления, обеспечивающие прием, передачу и обработку телеметрической информации (ТМИ). Сбор и обработка информации в системах телеметрии обеспечивают процесс управления как самим космическим аппаратом (КА), так и установленным на нем научным оборудованием. При этом телеметрические данные, принимаемые наземными комплексами управления (НКУ) представляют собой огромные объемы данных, обработка которых является сложной и трудоемкой задачей. Для решения этой проблемы используются различные методы автоматической обработки данных. Их совершенствование является ключевым фактором обеспечения отказоустойчивости бортового программно-аппаратного комплекса и повышения его надежности. Среди существующих методов обработки информации, нашедших широкое применение в исследуемой области, можно выделить метод мультиверсионного программирования (МВП). Мультиверсионное программирование прочно закрепилось как эффективный метод повышения надежности программного обеспечения и создания отказоустойчивых систем. С момента своего возникновения в 1970-е гг., данный подход также ассоциируется с надежностью программных систем для аэрокосмической отрасти, в том числе наземных пунктов управления космическими аппаратами. В настоящей работе рассматривается применение данного подхода для обработки телеметрической информации, поступающей с малых космических аппаратов. Автором рассмотрен вопрос критики МВП подхода в научной литературе в части его применимости для задач обработки ТМИ.

Еще

Мультиверсионное (n-версионное) программирование, программная избыточность, малый космический аппарат, телеметрическая информация, надежность программного обеспечения

Короткий адрес: https://sciup.org/148328175

IDR: 148328175   |   DOI: 10.31772/2712-8970-2023-24-3-436-449

Список литературы Метод мультиверсионного программирования для обработки телеметрической информации малых космических аппаратов

  • Tröger P. Dependable Systems Software Dependability. 2010.
  • Avizienis A. The methodology of n-version programming //Software Fault Tolerance. 1995. Vol. 3. P. 23-46.
  • Hatton L. N-version design versus one good version // IEEE Software. 1997. Vol. 14, №. 6. P. 71-76.
  • Царев Р. Ю. Среда исполнения мультиверсионного программного обеспечения // Программные продукты и системы. 2007. № 2. С. 29-30.
  • Solving navigation-temporal tasks in different coordinate systems / V. E. Chebotarev, V. V. Bre-zitskaya, I. V. Kovalev et al. // IOP Conference Series: Materials Science and Engineering. 2018. P. 022029.
  • Development of methods for equivalent transformation of gert networks for application in multiversion software / M. V. Saramud, P. V. Zelenkov, I. V. Kovalev et al. // IOP Conference Series: Materials Science and Engineering. 2016. P. 012015.
  • Applying filtering for determining the angular orientation of spinning objects during interference / I. N. Kartsan, A. E. Goncharov, P. V. Zelenkov et al. // IOP Conference Series: Materials Science and Engineering. 2016. P. 012020.
  • Карцан И. Н., Ефремова С. В. Мультиверсионная модель программного обеспечения систем управления космическим аппаратом с ранжированием принятия решения // Сибирский аэрокосмический журнал. 2021. Т. 22, № 1. С. 32-46.
  • Эффективность радионавигационных систем / И. Н. Карцан, К. Г. Охоткин, Р. В. Карцан, Д. Н. Пахоруков // Вестник СибГУ. 2013. № 3 (49). С. 48-50.
  • Карцан И. Н. Наземный комплекс управления для малых космических аппаратов // Вестник СибГУ. 2009. № 3 (24). С. 89-92.
  • Ковалев И. В., Царев Р. Ю. Многоатрибутивная модель формирования гарантоспособного набора проектов мультиверсионных программных систем // Вестник НИИ СУВПТ. 2001. Вып. 7. С. 129-137.
  • Карцан И. Н., Ефремова С. В., Горовой Д. С. Применение процедуры topsis в интересах оптимизации системы управления // Вопросы контроля хозяйственной деятельности и финансового аудита, национальной безопасности, системного анализа и управления: сб. материалов VI Всеросс. науч.-практ. конф. М., 2021. С. 436-445.
  • Efremova S. V., Kartsan I. N., Zhukov A. O. An ordered ranking multi-attributive model for decision-making systems with attributes of control systems software // IOP Conference Series: Materials Science and Engineering. 2021. P. 12068.
  • The hardware and software implementation of the adaptive platform for an onboard spacecraft control system / I. N. Kartsan, A. O. Zhukov, A. O. Platonov, S. V. Efremova // Journal of Physics: Conference Series. 2019. P. 33071.
  • Formation of optimal composition of the modules of single-function multiversion software for automated control system of the satellite communication system / V. I. Kudymov, V. V. Brezitskaya, P. V. Zelenkov et al. // IOP Conference Series: Materials Science and Engineering, 2018. No. 450 (5). P. 052009.
  • Choice of optimal multiversion software for a small satellite ground-based control and command complex / I. N. Kartsan, S. V. Efremova, V. V. Khrapunova, M. I. Tolstopiatov // IOP Conference Series: Materials Science and Engineering, 2018. No. 450 (2). P. 022015.
  • Карцан И. Н. Мультиверсионное программное обеспечение бортового комплекса управления с генетическим алгоритмом // Решетневские чтения: материалы XXI Междунар. науч.-практ. конф. (08-11 ноября 2017, г. Красноярск). Красноярск: СибГУ им. М.Ф. Решетнева, 2017. Т. 1. С. 372-373.
  • Subasi N., Guner U., Ustolgu I. N-version programming approach with implicit safety guarantee for complex dynamic system stabilization applications // Measurement and Control. 2021. Vol. 54(3-4). P. 269-278.
  • Knight J., Leveson N. A large scale experiment in N-version programming // Proc. Of Ninth Annual Software Engineering Workshop. 1984.
  • Spatial filtering algorithms in adaptive multi-beam hybrid reflector antennas / V. N. Tyapkin, I. N. Kartsan, D. D. Dmitriev, A. E. Goncharov // 2015 International Siberian Conference on Control and Communications, SIBCON 2015 - Proceedings. 2015. P. 7147244.
  • Phase methods for measuring the spatial orientation of objects using satellite navigation equipment / Y. L. Fateev, D. D. Dmitriev, V. N. Tyapkin et al. // IOP Conference Series: Materials Science and Engineering. 2015. P. 012022.
  • Goseva-Popstojanova K., Grnarov A. Performability and reliability modeling of n version fault tolerant software in real time systems // EUROMICRO 97. Proceedings of the 23rd EUROMICRO Conference: New Frontiers of Information Technology (Cat. No. 97TB100167). IEEE, 1997. Р. 532-539.
  • Carden F., Jedlicka R., Henry R. Telemetry Systems Engineering. Boston and London: Artech House, 2002.
  • Bin S., Hua W., Yu-jie Y., Hui-fen D., Juan Z. A universal spacecraft telemetry data processing model based on MCP // 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA). Beijing, China, 2017. P. 12-15.
  • Manyak G. Fault tolerant and flexible cubesat software architecture. California Polytechnic State University, 2011.
  • Карцан И. Н., Скрипачев В. О. Оптимизация отказоустойчивого программного обеспечения // Вопросы контроля хозяйственной деятельности и финансового аудита, национальной безопасности, системного анализа и управления: сб. материалов V Всеросс. науч.-практ. конф. 2020. С. 337-341.
  • Карасева М. В., Карцан И. Н., Зеленков П. В. Метопоисковая мультилингвистическая система // Вестник СибГУ. 2007. № 3 (16), С. 69-70.
Еще
Статья научная