Методика измерения IP2 и IP3 двухтонового сигнала

Автор: Поляков Андрей Евгеньевич, Стрыгин Леонид Васильевич

Журнал: Труды Московского физико-технического института @trudy-mipt

Рубрика: Радиотехника, радиофизика, электроника

Статья в выпуске: 2 (14) т.4, 2012 года.

Бесплатный доступ

Статья содержит определение и методику измерений характеристик нелинейности тракта - точек пересечения интермодуляции второго и третьего порядков IP2 и IP3 для двухтонового сигнала, в том числе с неравными уровнями тонов. Также представ- лен ряд рекомендаций, связанных с параметрами и режимами работы оборудования, участвующего в измерении. Приведенная методика ориентирована прежде всего на ис- пользование доступной и широко распространенной измерительной техники. Для разработчиков аналоговой техники и широкого круга исследователей, работа- ющих с измерительной техникой в данной области.

Интермодуляция, нелинейные искажения, двухтоновый сигнал

Короткий адрес: https://sciup.org/142185831

IDR: 142185831

Текст научной статьи Методика измерения IP2 и IP3 двухтонового сигнала

Широко распространенными, особенно в зарубежной практике, параметрами, характеризующими нелинейность тракта, являются точки пересечения интермодуляции второго и третьего порядков двухтонового сигнала. [1]. Данные параметры сравнительно просто измерить, они приводят к несложным инженерным расчетам и дают наглядную оценку уровня продуктов нелинейных искажений тракта.

Несмотря на. прочно занятую позицию в системе параметров иностранной элементной базы [2,3], данные характеристики в отечественной литературе освещены, по мнению автора, недостаточно. У разработчиков часто возникают вопросы, связанные с их точным определением. Кроме того, часто возникают трудности с методикой измерения в конкретных случаях, в результате чего измеряются искажения не самого образца, а. измерительной или формирующей сигнал аппаратуры. Исследователям, ставящим физический или другой эксперимент и использующим аналоговую технику, также полезно иметь представление о рассматриваемой системе параметров для учета, нелинейных искажений и количественной оценки связанной с ними погрешности.

Перечисленное выше определяет содержание статьи, в которой подробно рассмотрены математическая модель, взаимосвязь различных параметров, область применения, даны рекомендации по проведению измерений, использованию элементной базы и т.д.

1.    Нелинейные искажения тракта1.1.    Математическая модель

Математическая модель нелинейной передаточной характеристики в общем случае описана в специальной литературе довольно подробно. Однако в инженерных расчетах она используется крайне редко ввиду сложности вычислений. Поэтому на. практике ее заменяют более простой статической моделью, представляющей собой степенной ряд.1 Как правило, ограничиваются третьей степенью, поскольку продукты остальных членов существенно меньше. Следует отметить, что подобная аппроксимация возможна, только для малых сигналов. О конкретной границе будет сказано ниже.

Итак, представим статическую передаточную характеристику в следующем виде (рис. 1):

У (X ) = G1X + G2X 2 + G3X 3,                       (1)

где X — сигнал на. входе системы. У — на выходе.

Рис. 1. Математическая модель тракта, усиления

1.2.    Интермодуляция двухтонового сигнала

Пусть X - двухтоновый сигнал с амплитудами А и В:

X = А sin а + В sin 3,

где а = 2тг/1Т 3 = 2тг/2Т fi и /2 — частоты гармонических сигналов (рис. 2).

f 1 f 2                   f

Рис. 2. Спектр входного сигнала X

Найдем гармонические составляющие, появляющиеся в результате возведения сигнала, во вторую и третью степени:

(A sin а + В sin 3 )2

А2 + В2

2

  •    АВ cos(a + 3) + АВ cos(а — 3) —

А2         В 2

  • —    — cos 2а--— cos 23,                         (о)

(А sin а + В sin3)3 = (^А3 + З в 2A)sinа + (3В3 + За2В )sin3 + 3                    3

+ ^А2Вsin(2а — 3) + -В2Аsin(23 -а) —            (4)

  • А 3         В 3 . _

  • —    — sin За — sin 33

  • —    ^А2В sin(2а + 3) ^В2А sin(23 + а).

На рис. 3 в частотной области отображены мощности найденных составляющих.

Пусть Р д и Р в — мощности тонов входного сигнала, т.е.

Р » = у, Рв = В.                          (5)

Пользуясь результатами выражений (3, 4), характеристикой (1) и соотношениями (5), найдем мощности интересующих нас гармонических составляющих на. выходе (табл. 1).

Рис. 3. Спектр выходного сигнала Y

Таблица!

Уровни гармонических составляющих на выходе для двухтонального сигнала с уровнями Р д и Р в

Поз.

Обозначение

Частота.

Значение (А, В)

Значение ( Рд, Рв)

1

Р

/1

1/2^1 А2

g2^

2

Р

/2

1/2G1B2

G^b

3

±Р

/2 ± /1

1/2G22A2B2

2G2 А Р в

4

Р2Р-Ь

2/1 — /2

9/32G3A4B 2

9/4G2Р 2 Р в

5

Р2 ? 2-Р

2/2 — /1

9/32G2A2B 4

9/4G2Р д Р 2

1.3.    Точки пересечения IP2 и IP3

Пусть уровни тонов входного сигнала одинаковы:

А = В = С, Рс = С, где Рс — мощность каждого из тонов на входе. Тогда аналогично таблице 1 выпишем уровни составляющих на выходе (табл. 2).

На рис. 4 в логарифмическом масштабе отображена зависимость уровней составляющих на выходе с частотами /1 и /2 (усиленный сигнал), /2 ± /1 (продукты второго порядка), 2/2 — fi и 2/1 — /2 (третьего порядка) от мощности тона Рс- Как и следовало ожидать, наклон зависимости усиленного сигнала равен 1:1, продуктов нелинейности второго порядка — 2:1, третьего — 3:1. Это означает, что при каждом уменьшении мощности входного сигнала на 1 dB отношение мощности выходного сигнала и искажений второго порядка увеличивается на 1 dB, а для третьего порядка — на 2 dB. Следует учесть, что указанные зависимости справедливы лишь для малых сигналов (как правило, ниже точки децибельной компрессии на 6-10 dB).

Т а б л и ц а 2

Уровни гармонических составляющих на выходе для двухтонового сигнала с одинаковыми уровнями P c

Поз.

Обозначение

Частота.

Значение (С)

Значение ( Pq)

1

PI 1 , 2

/1, /2

1/2G1C2

G^P q

2

IM2

/2 ± /1

1/2G2C 4

2G22P C

3

IM3

2/1 — /2, 2/2 — /1

9/32G3C 6

Wc

Рис. 4. Зависимость уровня продуктов нелинейных искажений от мощности тона, входного двухтонального сигнала.

Точкой пересечения интермодуляции второго порядка по входу IIP2 (Input IP2) для двухтонального сигнала с частотами /1 и /2 и одинаковыми уровнями тонов называется такая мощность тона, входного сигнала, при котором аппроксимированные выходные мощности усиленного тона и продуктов нелинейности второго порядка на частоте /2 — /1 (или /2 + fi равны. __________________________________________________________________

Точкой пересечения интермодуляции второго порядка по выходу OIP 2

(Output IP2) для двухтонового сигнала с частотами /1 и /2 и одинаковыми уровнями тонов называется такая аппроксимированная мощность тона, выходного сигнала, при которой она. равна, мощности продукта, нелинейности второго порядка, на. частоте /2 — /1 (иЛИ /2 + /1).

Из данного определения и рассмотренных выше зависимостей (табл. 2) следует очевидное соотношение:

OIP2 = IMD2 • Py^, Р

IMD2 = ?M, (P^ « Pidв), где Pf1 2 — мощность тона выходного сигнала, IM2 — мощность продукта нелинейности второго порядка на частоте /2 ± /1 (рис. 5).

Точкой пересечения интермодуляции второго порядка по входу IIP 2

(Input IP2) называется мощность входного тона, соответствующая мощности OIP2

на. выходе.

Те.

OIP2 = IIP2 Gi

Рис. 5. Значения IMX и IMDT

Точкой пересечения интермодуляции третьего порядка по выходу OIP 3 (Output IP3) для двухтонового сигнала с частотами /1 и /2 и одинаковыми уровнями тонов называется такая аппроксимированная мощность тона выходного сигнала, при которой она равна мощности продукта нелинейности третьего порядка на частоте 2/2 -/1 (или 2/1 -/2). ___________________________________________________________________

Из данного определения и рассмотренных выше зависимостей (табл. 2) следует очевидное соотношение:

OIP3 = VIMD3 ^1 , 2 ,

IMD3  =  pMl, (P^1,2 ^РЫВ)’ где Pf1 2 — мощность тона выходного сигнала, IM3 — мощность продукта нелинейности третьего порядка на частоте 2/2 — /1 (или 2/1 — /2) (рис. 5).

Точкой пересечения интермодуляции третьего порядка по входу IIP 3 (Input IP3) называется мощность входного тона, соответствующая мощности OIP3 на выходе.

То есть

OIP3 = IIP3 G^

Следует отметить, что параметры IP2 и IP3 имеют размерность мощности. Для логарифмических величин, выраженных в децибелах, соотношения (6-9) принимают следующий вид:

IMD2

= OIP2 Ph 2 , [dB]

OIP2

= IIP2 + G1, [dB]

IMD3

= 2(OIP2 P j i , 2 ), [dB]

OIP3

= IIP3 + G1. [dB]

1.4.    Случай разных уровней тонов

Приведенные выражения, по сути, определяют методику измерений для двухтонового сигнала с одинаковыми уровнями. Однако не всегда удается получить равные уровни тонов, поэтому желательно получить формулы и для общего случая. Для этого из полученных соотношений выразим коэффициенты G2 и G3 через IP2 и IP3, затем с помощью табл. 1 свяжем их с мощностями P f 1 и P j2.

Подставив в (6) выражения поз. 1, 2 таблицы 2, получим

OIP2 -

G1 2G|'

(Ю)

С помощью таблицы 1 выразим G2 через P ^ 1, P j 2 и P j 2 ± j 1, получим

2G2 =

g4p/ 2 ± / i

P f 1 Ph

Подставив это выражение в (10), получим

OIP2

P f 1 P f 2 . РЬ±К ‘

(И)

Аналогично подставив в (8) выражения поз. 1, 3 таблицы 2, получим

OIP3 - 2G1.

3G3

С помощью таблицы 1 выразим G3 через P ^ 1, P j 2 и P2/2—/1 и P2 J 1 - J 2, получим

3g -

2 3

Gy р-  ■ - Gp Р'  '

p f 2 VP7i     P f i ,p

Подставив это выражение в (12), получим

OIP3 -

G VP1 - G

V P2 f 2 - f 1    V P2 f 1 - f 2

Для логарифмических величин, выраженных в децибелах, соотношения (11), (13) принимают следующий вид:

OIP2 - РД +P f 2 P f 2 ± f i , [dB]

OIP3  -   P f 2 + ^1 p 2/ 2 -/ 1 , [dB]

OIP3  -  P/i + P / 2 р 2/ 1 -/ 2 . [dB]

2. Методика измерения2.1.    Схема

Для описания методики измерения и выявления часто встречающихся «подводных камней» разного рода рассмотрим две модели, отличающиеся способом формирования двухтонового сигнала.

Рис. 6. Формирование двухтопового сигнала, с помощью смесителя

Вариант на основе переноса частот

Первый вариант схемы формирования сигнала, основан на. использовании переноса, частот (рис. 6). К данной схеме можно, например, отнести генератор с внешним входом модуляции. Эта. же модель соответствует и векторному генератору.

Несущая / lo с генератора Е1 подается на вход гетеродина смесителя Ml. На вход IF смесителя подается низкая частота А/ с источника Е2. Смеситель выполняет перенос частоты, формируя, таким образом, двухтоновый сигнал с частотами / lo ± А/. Далее он подается на. усилитель А1, представляющий выходной каскад прибора, и на. вход измеряемого тракта Adut2- С выхода, исследуемой системы сигнал подается на. аттенюатор ATI (для обеспечения линейного режима, последующих входных каскадов), затем на. анализатор спектра S1.

Поскольку компоненты, входящие в состав схемы, не идеальны, то следует учесть ряд их особенностей:

  • •    собственную нелинейность выходного каскада прибора (т.е. усилителя А1);

  • •    неподавленную несущую смесителя Ml и гармоники частоты /lo',

  • •    гармоники частот А/ сигнала источника Е2.

Рассмотрим перечисленные пункты более подробно и сформируем необходимые требования к параметрам входящих в состав схемы компонентов.

Поскольку выходной каскад (усилитель А1) сам вносит нелинейные искажения, то для точности измерений необходимо, чтобы OIP2 и OIP3 усилителя А1 были выше IIP2 и IIP3 измеряемого тракта. Adut- Сложность, однако, заключается в том, что эти параметры как раз и требуется измерить. Поэтому следует ориентироваться на. расчетные значения.

Рассмотрим смеситель. Как известно, он переносит сигнал со входа. IF не только на. частоту /lo, но и на кратные ей частоты в силу принципиальной нелинейности входа гетеродина. Кроме того, есть неподавленная несущая. Таким образом, формируется составляющая на частоте 2 / lo = /1 + /2, т.е. на частоте, соответствующей расположению продукта интермодуляции второго порядка IM2. Ситуацию можно исправить, подключив фильтр к выходу усилителя А1.

Рассмотрим сигнал на. входе смесителя Ml. Гармоники данного сигнала, расположены после переноса на частотах /lo ± 2А/, /lo ± 3А/ и т.д. Отметим, что /lo + 3А/ = 2/2 — /1 и /lo — 3А/ = 2/1 — /2, т.е. данные составляющие расположены на частотах, соответствующих продуктам интермодуляции третьего порядка IM3. Поэтому источник Е2 должен обладать высоким подавлением гармоник, а вход IF-смесителя — достаточной линейностью для проведения измерений.

Вариант на основе сумматора мощности

Второй вариант схемы формирования сигнала основан на использовании двух источников с близкими частотами и сумматора мощности (Power Splitter/ Combiner) (рис.7). Эта схема требует чуть больше оборудования (два высокочастотных генератора вместо одного), но, как будет показано далее, обладает рядом преимуществ перед первым вариантом.

Рис. 7. Формирование двухтопового сигнала, с помощью сумматора, мощности

Два независимых источника Е1 и Е2 формируют сигналы с близкими частотами fi и f2, которые затем подаются на соответствующие усилители А1 и А2, представляющие выходные каскады генераторов как отдельных приборов. Затем сигналы подаются на. входы пассивного направленного3 сумматора мощности, обеспечивающего развязку между его входами. С выхода, сумматора, сигнал подается на. вход измеряемого тракта. Aqut1; затем на аттенюатор ATI и на анализатор спектра S1. Следует отметить, что между сумматором и входом исследуемого тракта, отсутствуют какие-либо активные компоненты.

Рассмотрим следующие побочные эффекты компонентов данной схемы:

  • •    гармоники на. выходе источников Е1 и Е2;

  • •    нелинейности усилителей А1 и А2;

  • •    развязку входов сумматора, (подавление прохождения сигнала, от одного входа, к другому обозначим S12).

Для начала, предположим развязку сумматора, достаточно большой и рассмотрим прохождение сигналов с частотами fi и f2 по отдельности. Поскольку источники Е1 и Е2 формируют сигналы каждый своей частоты, то явление интермодуляции на. усилителях А1 и А2 при большой изоляции каналов сумматора, практически отсутствует. По сути, эти усилители могут работать и в нелинейном режиме, что приведет лишь к увеличенным уровням составляющих на кратных частотах — 2fi, 2f2, 3fi, 3f2 и т.д. Отметим, что данные частоты не совпадают с частотами интересующих нас продуктов интермодуляции IM2 и IM3. Это означает, что можно не предъявлять особых требований к генераторам, входящим в состав схемы измерений.

Т а б л и ц а 3

Сумматоры/делители мощности компании Mini-Circuits

Part No

Frequency Range

Isolation

Insertion Loss

Cost

ZFSC-2-2500+

10-2500 MHz

>16 dB

<0.6 dB

$75

ZFSC-2-10G+

2-10 GHz

>15 dB

<1 dB

$70

Рассмотрим влияние одного генератора на другой. Сигнал с выхода усилителя А1 проходит с первого входа сумматора на второй, т.е. на выход усилителя А2, с подавлением 512. Если подавление мало (например, при использовании ненаправленного резистивного сумматора), то на выходном каскаде А2 возникает интермодуляция с неравными тонами. Оценку продуктов интермодуляции можно произвести с помощью выражений (11), (13). Наличие развязки существенно улучшает характеристики — значения IMD2 и IMD3 увеличиваются приблизительно на 512 (в логарифмическом масштабе) при том же уровне мощности сигнала на выходе!

В таблице 3 приведен пример сумматоров мощности компании Mini-Circuits, перекрывающих диапазон от 10 MHz до 10 GHz, внешний вид показан на рис. 8.

Рис. 8. Внешний вид сумматора/делителя мощности

2.2.    Заключительные рекомендации

В заключение приведем несколько рекомендаций по порядку измерений.

  • 1)    Соберите одну из схем, показанных на рис. 6, 7. Второй вариант является предпочтительным. Аттенюатор ATI пока поставьте по минимуму, чтобы входной сигнал был в диапазоне допустимых значений анализатора.

  • 2)    Подайте двухтоновый сигнал на вход исследуемого тракта Аоит такой, чтобы мощность на его выходе была на 10 dB ниже точки Рщв- Вероятнее всего, вы увидите сильно завышенные уровни продуктов IM2 и IM3, не соответствующие расчетным. Не стоит преждевременно беспокоиться, скорее всего, это собственные нелинейности анализатора.

  • 3)    Добавьте аттенюацию ATI путем включения внутреннего аттенюатора анализатора или добавления внешнего. В случае собственной нелинейности анализатора при добавлении, скажем, 3 dB, значение IMD2 должно увеличиться на 3 dB, а значение IMD3 — на 6 dB. Увеличением аттенюации ATI добейтесь, чтобы IMD при увеличении ATI практически не менялись — это означает, что собственные искажения анализатора гораздо меньше искажений измеряемого тракта.

  • 4)    Измерьте значения IMD2 и IMD3, а также мощность на выходе Аоит (не забудьте учесть аттенюатор ATI). Рассчитайте по приведенным выше формулам значения OIP2 и OIP3.

  • 5)    Проверьте, что измеренные искажения обусловлены именно исследуемым трактом, а не схемой формирования сигнала. Для этого достаточно исключить из схемы измеряемый тракт Aqut- Если IMD2 и IMD3 будут значительно больше ранее измеренных, то проведенные измерения выполнены верно. Если нет, то следует использовать более мощные генераторы в схеме формирования двухтонального сигнала.

Список литературы Методика измерения IP2 и IP3 двухтонового сигнала

  • Kenneth S. Kundert. Accurate and Rapid Measurement of IP2 and IP3//Designer's Guide Community, 22 May 2002. Also available from www.designers-guide.com.
  • Abidi A.A. General relations between IP2, IP3, and offsets in differential circuits and the effects of feedback//IEEE Trans. on Microwave Theory and Techniques. -May 2003. -V. 51, I. 5. -P. 1610-1612.
  • Doug Stuetzle. Understanding IP2 and IP3 Issues in Direct Conversion Receivers forWCDMA Wide Area Basestations//High Frequency Electronics. -June 2008. -V. 7, N. 6 and Linear Technology Magazine. -June 2008. -V. 18, N 2.
Статья научная