Методология сетей с симметричными функциями преобразования нейронов

Автор: Меркушева А.В., Малыхина Г.Ф.

Журнал: Научное приборостроение @nauchnoe-priborostroenie

Рубрика: Обзоры

Статья в выпуске: 2 т.16, 2006 года.

Бесплатный доступ

Представлены основы методологии сетей с симметричными функциями преобразования у нейронов (СФПН), которые находят применение в задачах аппроксимации, распознавания образов, идентификации систем (объектов), создания контроллеров, снижения уровня зашумленности сигналов в информационно-измерительных системах. Особенность структуры таких нейронных сетей (НС) состоит в локализации элементов скрытого слоя в многомерном векторном пространстве (размерность которого идентична размерности входной информации) и в наличии СФПН, зависящей от (метрической) нормы разности векторов локализации элементов скрытого слоя и входного вектор-сигнала. Даны элементы прикладной теории распознавания образов на сети с СФПН; критерий обучения НС на основе функционала, регуляризованного по методу А.Н. Тихонова; общий вид функции аппроксимации и интерполирования, полученный на основе этого критерия с использованием схемы Грина для обратной задачи при преобразовании линейным дифференциальным оператором; метод выбора параметра регуляризации.

Еще

Короткий адрес: https://sciup.org/14264434

IDR: 14264434

Статья научная