Методы и результаты исследования эффекта Портевена - Ле Шателье: эксперименты и макрофеноменологические модели

Бесплатный доступ

Открытый в первой половине XIX в. Ф. Саваром и А. Массоном (и заново «переоткрытый» в начале ХХ в. А. Портевеном и Ф. Ле Шателье) эффект прерывистой пластичности до настоящего времени остается предметом интенсивных экспериментальных и теоретических исследований. В значительной мере интерес к данной проблеме обусловлен практической значимостью: известно, что прерывистая пластичность (эффект Портевена - Ле Шателье (ЭПЛШ)), особенно - на заключительных стадиях обработки металлов и сплавов пластическим деформированием, - приводит к снижению вязкости, значительному возрастанию шероховатости поверхности изделий. Последнее, в свою очередь, снижает статическую и усталостную прочность, коррозионную стойкость, ухудшает аэродинамические характеристики, износостойкость. Кроме того, с развитием экспериментальной техники и теоретических методов вскрываются все новые механизмы, обусловливающие прерывистую пластичность, изучение и описание которых представляет собой огромную по широте и глубине область для фундаментальных исследований механиков, физиков, металловедов. Предлагаемая статья содержит две основные части. В первой из них приведен обзор результатов многочисленных экспериментальных исследований поведения сплавов в интервалах температур и скоростей деформаций, характерных для проявления ЭПЛШ. Рассмотрены особенности и основные механизмы реализации эффекта для различных сплавов. Вторая часть статьи содержит описание феноменологических конститутивных моделей, базирующихся, главным образом, на экспериментальных исследованиях поведения макрообразцов (как правило, на одноосное нагружение). В ряде из указанных моделей для формулировки использовались соображения физического характера. В заключении приведена краткая справка об обзорных работах. Анализ конститутивных моделей, основанных на рассмотрении физических механизмов и их носителей (дислокаций, примесных атомов), содержится в готовящемся авторами отдельном обзоре.

Еще

Обзор, деформационное старение, примесные атомы, прерывистая пластичность, отрицательная чувствительность к скорости деформации, эффект портевена - ле шателье, критическая деформация, экспериментальные результаты, макрофеноменологические конститутивные модели

Еще

Короткий адрес: https://sciup.org/146282777

IDR: 146282777   |   DOI: 10.15593/perm.mech/2023.5.09

Список литературы Методы и результаты исследования эффекта Портевена - Ле Шателье: эксперименты и макрофеноменологические модели

  • Белл Дж.Ф. Экспериментальные основы механики деформируемых твердых тел. Ч.1. Малые деформации. - М.: Наука. Гл. ред. физ.- мат. лит., 1984. - 600 с.
  • Григорьев Е.Г. и др. Физическое материаловедение. Т.4. Физические основы прочности. Радиационная физика твердого тела. Компьютерное моделирование / Григорьев Е.Г., Перлович Ю.А., Соловьев Г.И., Удовский А.Л., Якушин В.Л. Под общей ред. Б.А. Калина. - М.: МИФИ, 2008. - 696 с.
  • Поздеев А.А., Трусов П.В., Няшин Ю.И. Большие упругопластические деформации: теория, алгоритмы, приложения. - М.: Наука, 1986. - 232 с.
  • Трусов П.В., Чечулина Е.А. Прерывистая текучесть: физические механизмы, экспериментальные данные, макро-феноменологические модели // Вестник ПНИПУ. Механика. - 2014. - № 3. - С. 186-232. DOI: 10.15593/perm.mech/2014.3.10
  • Трусов П.В., Чечулина Е.А. Прерывистая текучесть: модели, основанные на физических теориях пластичности // Вестник ПНИПУ. Механика. - 2017. - № 1. - С. 134-163. DOI: 10.15593/perm.mech/2017.1.09
  • Фридель Ж. Дислокации. - М.: Мир, 1967. - 644 с.
  • Ait-Amokhtar H., Boudrahem S., Fressengeas C. Spatiotemporal aspects of jerky flow in Al-Mg alloys, in relation with the Mg content // Scripta Materialia. - 2006. - Vol. 54. - P. 21132118. DOI: 10.1016/j.scriptamat.2006.03.006
  • Ait-Amokhtar H., Fressengeas C. Crossover from continuous to discontinuous propagation in the Portevin - Le Chatelier effect // Acta Materialia. - 2010. - Vol. 58. - P. 1342-1349. DOI: 10.1016/j.actamat.2009.10.038
  • Ait-Amokhtar H., Fressengeas C., Bouabdallah K. On the effects of the Mg content on the critical strain for the jerky flow of Al-Mg alloys // Materials Science & Engineering A. - 2015. - Vol. 631. - P. 209-213. DOI: 10.1016/j.msea.2015.02.055
  • de Almeida L.H., Le May I., Emygdio P.R.O. Mechanistic modeling of dynamic strain aging in austenitic stainless steels // Materials Characterization. - 1998. - Vol. 41, is. 4. - P. 137-150. DOI: 10.1016/S1044-5803(98)00031-X
  • Baird J.D. The effects of strain-ageing due to interstitial solutes on the mechanical properties of metals // Metallurgical Reviews. -1971. - Vol. 16, is. 1. - P. 1-18. DOI: 10.1179/mtlr.1971.16.1.1
  • Beese A.M. et al. Absence of dynamic strain aging in an additively manufactured nickel-base superalloy / A.M. Beese, Z. Wang, A.D. Stoica, D. Ma // Nature Communications. - 2018. -Vol. 9. - P. 2083 (8 p.). DOI: 10.1038/s41467-018-04473-5
  • Benallal A. et al. Effects of strain rate on the characteristics of PLC deformation bands for AA5083-H116 aluminium alloy / A. Be-nallal, T. Berstad, T. Bervik, O.S. Hopperstad, R. Nogueira de Codes // Philosophical Magazine. - 2008a. - Vol. 88, no. 28-29. - P. 33113338. DOI: 10.1080/14786430802468223
  • Benallal A. et al. On the measurement and evaluation of the width of Portevin-Le Chatelier deformation bands with application to AA5083-H116 aluminium alloy / A. Benallal, T. Berstad, T. Bervik, O.S. Hopperstad, R. Nogueira de Codes // IUTAM Symposium on Theoretical, Modelling and Computational Aspects of Inelastic Media, B.D. Reddy (ed.). - Springer Science+Business Media B.V. - 2008b. - P. 329-338.
  • Bharathi M.S. et al. Multifractal burst in the spatio-temporal dynamics of jerky flow / M.S. Bharathi, M. Lebyodkin, G. Anantha-krishna, C. Fressengeas, L.P. Kubin // Phys. Rev. Lett. - 2001. -Vol. 87. - P. 165508. DOI: 10.1103/PhysRevLett.87.165508
  • Bharathi M.S. et al. The hidden order behind jerky flow / M.S. Bharathi, M. Lebyodkin, G. Ananthakrishna, C. Fressengeas, L.P. Kubin // Acta Materialia. - 2002. - Vol. 50. - P. 2813-2824. DOI: 10.1016/S1359-6454(02)00099-X
  • Bhowmik N. et al. Genesis of plasticity-induced serrated metal flow in medium-Mn steel / N. Bhowmik, S. Ghosh, S. Man-dal, A. Haldar, P.P. Chattopadhyay // CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry). - 2022. -Vol. 77. - P. 102425 (12 p.). DOI: 10.1016/j.calphad.2022.102425
  • Brechet Y., Estrin Y. On a pseudo-Portevin - Le Chatelier effect // Scripta Metallurgica et Materialia. - 1994. -Vol. 31, no. 2. - P. 185-190. DOI: 10.1016/0956-716X(94)90172-4
  • Brechet Y., Estrin Y. On the influence of precipitation on the Portevin - Le Chatelier effect // Acta Metall. Mater. - 1995. -Vol. 43, no. 3. - P. 955-963. DOI: 10.1016/0956-7151(94)00334-E
  • Brechtl J. et al. Towards a greater understanding of serrated flows in an Al containing high-entropy-based alloy / J. Brechtl, S.Y. Chen, X. Xie, Y. Ren, J.W. Qiao, P.K. Liaw, S.J. Zinkle // Int. J. Plasticity. -2019. - Vol. 115. - P. 71-92. DOI: 10.1016/j.ijplas.2018.11.011
  • Brindley B.J., Worthington P.J. Yield-point phenomena in substitutional alloys // Metallurgical Reviews. - 1970. -Vol. 15, is. 1. - P. 101-114. DOI: 10.1179/mtlr.1970.15.1.101
  • Brüggemann C., Böhlke T., Bertram A. Modelling and simulation of the Portevin-Le Chatelier effect // Micro-macrointeraction in structured media and particle systems. Eds. A. Bertram, J. Tomas. - Springer Berlin Heidelberg. - 2008. - P. 53-61.
  • Cai M.C. et al. Strain rate and temperature effects on the critical strain for Portevin - Le Chatelier effect / M.C. Cai, L.S. Niu, T. Yu, H.J. Shi, X.F. Ma // Materials Science and Engineering A. -2010. - Vol. 527. - P. 5175-5180. DOI: 10.1016/j.msea.2010.05.001
  • Cai Y. et al. Influence of y' precipitateson Portevin - Le Chatelier effect of NI-based superalloy s / Y. Cai, C. Tian, S. Fu, G. Han, C. Cui, Q. Zhang // Materials Science & Engineering A. -2015. - Vol. 638. - P. 314-321. DOI: 10.1016/j.msea.2015.04.033
  • Casarotto L. et al. On nucleation and propagation of PLC bands in an Al-3Mg alloy / L. Casarotto, H. Dierke, R. Tutsch, H. Neuhäuser // Materials Science and Engineering A. - 2009. -Vol. 527. - P. 132-140. DOI: 10.1016/j.msea.2009.07.043
  • Cetlin P.R., Gülef A.§., Reed-Hill R.E. Serrated flow in aluminum 6061 alloy // Metal. Trans. - 1973. - Vol. 4. - P. 513517 (1973). DOI: 10.1007/BF02648704
  • Chand S. et al. Study of microstructure, hardness and aging behaviour of 2014 aluminum alloy / S. Chand, D. Madhusudhan, K.B. Sravani, A. Uma, V. Sindhu, S. Padmini Devi, G. Padmava // Int. J. Advances in Mechanical and Civil Engineering. - 2016. - Vol. 3, is. 3. - P. 79-83.
  • Chatterjee A. et al. Investigation of the Dynamic strain aging and mechanical properties in alloy-625 with different microstructures / A. Chatterjee, G. Sharma, R. Tewari, J.K. Chakravartty // Metallurgical and Materials Trans. A. - 2015. - Vol. 46A. -P. 1097-1107. DOI: 10.1007/s11661-014-2717-z
  • Chen W., Chaturvedi M.C. On the mechanism of serrated deformation in aged Inconel 718 // Materials Science and Engineering A. - 1997. - Vol. 229. - P. 163-168. DOI: 10.1016/S0921-5093(97)00005-1
  • Chen Z., Zhang Q., Wu X. Multiscale analysis and numerical modeling of the Portevin - Le Chatelier effect // Int. J. Multiscale Computational Engineering. - 2005. - Vol. 3, no. 2. -P. 227-237. DOI: 10.1615/IntJMultCompEng.v3.i2.70
  • Chibane N., Ait-Amokhtar H. On the Portevin - Le Chatelier instabilities in the industrial Al-2.5%Mg alloy // Proc. 21ème Congrès Français de Mécanique. - 2013. - P. 1-5. http://hdl.handle.net/2042/52385
  • Chibane N., Ait-Amokhtar H., Fressengeas C. On the strain rate dependence of the critical strain for plastic instabilities in Al-Mg alloys // Scripta Materialia. - 2017. - Vol. 130. -P. 252-255. DOI: 10.1016/j.scriptamat.2016.11.037
  • Chihab K. et al. The kinetics of the Portevin - Le Chatelier bands in an Al-5at%Mg alloy / K. Chihab, Y. Estrin, L.P. Kubin, J. Vergnol // Scripta Metallurgica. - 1987. - Vol. 21, is. 2. - P. 203-208. DOI: 10.1016/0036-9748(87)90435-2
  • Chihab K., Ait-Amokhtar H., Bouabdellah K. Serrated yielding due to Portevin - Le Chatelier effect in commercial Al-Mg alloys // Ann. Chim. Sci. Mat. - 2002. - Vol. 27. - P. 69-75. DOI:10.1016/S0151-9107(02)85008-5
  • Chihab K., Fressengeas C. Time distribution of stress drops, critical strain and crossover in the dynamics of jerky flow // Materials Science and Engineering A. - 2003. - Vol. 356. -P. 102-107. DOI: 10.1016/S0921-5093(03)00141-2
  • Chmelik F. et al. Mechanisms of serrated flow in aluminium alloys with precipitates investigated by acoustic emission / F. Chmelik, E. Pink, J. Krôl, J. Balik, J. Pesicka, P. Lukâc // Acta mater. - 1998. -Vol. 46, no. 12. - P. 4435-4442. DOI: 10.1016/S1359-6454(98)00070-6
  • Choudhuri D. et al. Precipitate-dislocation interaction mediated Portevin - Le Chatelier-like effect in a beta-stabilized Ti-Mo-Nb-Al alloy / D. Choudhuri, S.A. Mantri, T. Alama, S. Ba-nerjee, R. Banerjee // Scripta Materialia. - 2016. - Vol. 124. -P. 15-20. DOI: 10.1016/j.scriptamat.2016.06.043
  • Coër J. et al. Piobert-Luders plateau and Portevin-Le Chatelier effect in an Al-Mg alloy in simple shear / J. Coër, P.Y. Manach, H. Laurent, M.C. Oliveira, L.F. Menezes // Mechanics Research Communications. - 2013. - Vol. 48. - P. 1-7. DOI: 10.1016/j.mechrescom.2012.11.008
  • Colas D. et al. Investigation and modeling of the anomalous yield point phenomenon in pure tantalum / D. Colas, E. Finot, S. Flouri-ot, S. Forest, M. Mazière, T. Paris // Materials Science & Engineering A. - 2014. - Vol. 615. - P. 283-295. DOI: 10.1016/j.msea.2014.07.028
  • Cottrell A.H., Bilby B.A. Dislocation theory of yielding and strain ageing of iron // Proc. Phys. Soc. A. - 1949. - Vol. 62. -P. 49-62. DOI: 10.1088/0370-1298/62/1/308
  • Cottrell A.H., Jaswon M.A. Distribution of solute atoms round a slow dislocation // Proc. R. Soc. - 1949. - Vol. 199. -P. 104-114. DOI: 10.1098/rspa.1949.0128
  • Cuddy L.J., Leslie W.C. Some aspects of serrated yielding in substitutional solid solutions of iron // Acta Metallurgica. - 1972. -Vol. 20, is. 10. - P. 1157-1167. DOI: 10.1016/0001-6160(72)90164-2
  • Cui C. et al. Portevin - Le Chatelier effect in wrought Ni-based superalloys: Experiments and mechanisms / C. Cui, R. Zhang, Y. Zhou, X. Sun // J. Materials Science & Technology. -2020. - Vol. 51. - P. 16-31. DOI: 10.1016/j.jmst.2020.03.023
  • Curtin W., Olmsted D., Hector L. A predictive mechanism for dynamic strain ageing in aluminium-magnesium alloys // Nature Materials. - 2006. - Vol. 5, no. 11. - P. 875-880. DOI: 10.1038/nmat1765
  • D'Anna G., Nori F. Critical dynamics of burst instabilities in the Portevin-Le Chatelier effect // Phys. Rev. Lett. - 2000. -Vol. 85. - P. 4096. DOI: 10.1103/PhysRevLett.85.4096
  • Darowicki K., Orlikowski J., Zielinski A. Frequency bands selection of the Portevin-Le Chatelier effect // Computational Materials Science. - 2008. - Vol. 43. - P. 366-373. DOI: 10.1016/j.commatsci.2007.12.001
  • Deschamps A., Brechet Y. Influence of predeformation and ageing of an Al-Zn-Mg alloy - II. Modeling of precipitation kinetics and yield stress // Acta mater. - 1999. - Vol. 47, no. 1. -P. 293-305. DOI: 10.1016/S1359-6454(98)00296-1
  • The influence of precipitation on plastic deformation of Al-Cu-Li alloys / A. Deschamps, B. Decreus, F. De Geuser, T. Dorin, M. Weyland // Acta Materialia. - 2013. - Vol. 61. -P. 4010-4021. DOI: 10.1016/j.actamat.2013.03.015
  • Dierke H. et al. Portevin - Le Chatelier effect in Al-Mg alloys: Influence of obstacles - experiments and modelling / H. Dierke, F. Krawehl, S. Graff, S. Forest, J. Sachl, H. Neuhäuser // Computational Materials Science. - 2007. - Vol. 39. - P. 106-112. DOI: 10.1016/j.commatsci.2006.03.019
  • Dumbleton M.J. Discontinuous flow in zinc crystals and its relationship to strain ageing // Proc. Phys. Soc. Section B. -1954. - Vol. 67. - P. 98-104. DOI: 10.1088/0370-1301/67/2/302
  • Estrin Y., Kubin L.P. Collective dislocation behaviour in dilute alloys and the Portevin - Le Chatelier effect // J. Mechanical Behavior of Materials. - 1990. - Vol. 2, no. 3-4. - P. 255-292. DOI: 10.1515/JMBM.1989.2.3-4.255
  • Estrin Y., Kubin L.P. Plastic instabilities: phenomenology and theory // Materials Science and Engineering A. - 1991. -Vol. 137. - P. 125-134. DOI: 10.1016/0921-5093(91)90326-I
  • Estrin Y., Lebyodkin M.A. The influence of dispersion particles on the Portevin-Le Chatelier effect: from average particle characteristics to particle arrangement // Materials Science and Engineering A. - 2004. - Vol. 387-389. - P. 195-198. DOI: 10.1016/j.msea.2004.01.079
  • Estrin Y., McCormick P.G. Modelling the transient flow behaviour of dynamic strain ageing materials // Acta Metallurgica et Materialia. - 1991. - Vol. 39, is. 12. - P. 2977-2983. DOI: 10.1016/0956-7151(91)90030-5
  • Fäciu C. Modelling the Portevin-Le Chatelier effect - A study on plastic instabilities and pattern formation / Banabic D. (eds). Multiscale Modelling in Sheet Metal Forming. ESAFORM Bookseries on Material Forming. - Springer, Cham, 2016. -P. 351-403. DOI: 10.1007/978-3-319-44070-5_7
  • Franklin S.V., Mertens F., Marder M. Portevin - Le Chatelier effect // Physical Review E. - 2000. - Vol. 62, is. 6. -P. 8195-8206. DOI: 10.1103/PhysRevE.62.8195
  • Fortes M.A. Constitutive equations for inhomogeneous plastic flow and application to Lüders band propagation // J. Materials Science. - 1984. - Vol. 19. - P. 1496-1504. DOI: 10.1007/BF00563044
  • Graff S. et al. Strain localization phenomena associated with static and dynamic strain ageing in notched specimens: experiments and finite element simulations / S. Graff, S. Forest, J.-L. Strudel, C. Prioul, P. Pilvin, J.-L. Bechade // Materials Science and Engineering A. - 2004. - Vol. 387-389. - P. 181-185. DOI: 10.1016/j.msea.2004.02.083
  • Graff S. et al. Finite element simulations of dynamic strain ageing effects at V-notches and crack tips / S. Graff, S. Forest, J.-L. Strudel, C. Prioul, P. Pilvin, J.-L. Béchade // Scripta Materialia. - 2005. -Vol. 52. - P. 1181-1186. DOI: 10.1016/j.scriptamat.2005.02.007
  • Graff S. et al. Finite element simulations of the Portevin-Le Chatelier effect in metal-matrix composites / S. Graff, H. Dierke, S. Forest, H. Neuhäuser, J.-L. Strudel // Philosophical Magazine. - 2008. - Vol. 88, is. 28-29. - P. 3389-3414. DOI: 10.1080/14786430802108472
  • Guillermin N. et al. Experimental and numerical analysis of the Portevin - Le Chatelier effect in a nickel-base superalloy for turbine disks application / N. Guillermin, J. Besson, A. Köster, L. Lacourt, M. Mazière, H. Chalons, S. Forest // Int. J. Solids and Structures. - 2023. - Vol. 264. - P. 112076 (19 p.). DOI: 10.1016/j.ijsolstr.2022.112076
  • Gupta A.K. et al. Prediction of flow stress in dynamic strain aging regime of austenitic stainless steel 316 using artificial neural network / A.K. Gupta, S.K. Singh, S. Reddy, G. Hariharan // Materials and Design. - 2012. - Vol. 35. - P. 589-595. DOI: 10.1016/j.matdes.2011.09.060
  • Gupta A.K. et al. Development of constitutive models for dynamic strain aging regime in austenitic stainless steel 304 / A.K. Gupta, H.N. Krishnamurthy, Y. Singh, K.M. Prasad, S.K. Singh // Materials and Design. - 2013. - Vol. 45. - P. 616627. DOI: 10.1016/j.matdes.2012.09.041
  • Hähner P. Modelling of propagative plastic instabilities // Scripta Metallurgica et Materialia. - 1993. - Vol. 29, is. 9. -P. 1171-1176. DOI: 10.1016/0956-716X(93)90104-Z
  • Hähner P. On the foundations of stochastic dislocation dynamics // Appl. Phys. A. - 1996a. - Vol. 62, is. 5. - P. 473-481. DOI: 10.1007/BF01567120
  • Hähner P. On the physics of the Portevin-Le Châtelier effect. Part 1: The statistics of dynamic strain ageing // Materials Science and Engineering A. - 1996b. - Vol. 207. - P. 208-215. DOI: 10.1016/0921-5093(95)10033-4
  • Hähner P. On the critical conditions of the Portevin - Le Chatelier effect // Acta mater. - 1997. - Vol. 45, no. 9. - P. 36953707. DOI: 10.1016/S1359-6454(97)00066-9
  • Hähner P., Rizzi E. On the kinematics of Portevin - Le Chatelier bands: theoretical and numerical modelling // Acta Materialia. - 2003. - Vol. 51. - P. 3385-3397. DOI: 10.1016/S1359-6454(03)00122-8
  • Häner P., Zaiser M. Propagative modes of plastic deformation // J. de Physique IV (Proceedings). - 1993. -Vol. 03 (C7). - P. 1995-2004. DOI: 10.1051/jp4:19937319
  • Hähner P., Zaiser M. From mesoscopic heterogeneity of slip to macroscopic fluctuations of stress and strain // Acta mater. - 1997. -Vol. 45, no. 3. - P. 1067-1075. DOI: 10.1016/S1359-6454(96)00227-3
  • Hähner P. et al. Spatiotemporal analysis of Portevin - Le Châtelier deformation bands: Theory, simulation, and experiment / P. Hähner, A. Ziegenbein, E. Rizzi, H. Neuhäuser // Physical Review B. - 2002. - Vol. 65. - P. 134109 (20 p.). DOI: 10.1103/PhysRevB .65.134109
  • Halim H., Wilkinson D.S., Niewczas M. The Portevin -Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy // Acta Materialia. -2007. - Vol. 55. - P. 4151-4160. DOI: 10.1016/j.actamat.2007.03.007
  • Härtel M. et al. On the PLC effect in a particle reinforced AA2017 alloy / M. Härtel, C. Illgen, P. Frint, M.F.-X. Wagner // Metals. - 2018. - Vol. 8, no. 2. - P. 1-13. DOI: 10.3390/met8020088
  • Hill R. A theory of the yielding and plastic flow of anisotropic materials // Proc. Royal Soc. London. - 1948. - A193. -Р. 281-297. DOI: 10.1098/rspa.1948.0045
  • Hopperstad O.S. et al. A numerical study on the influence of the Portevin - Le Chatelier effect on necking in an aluminium alloy / O.S. Hopperstad, T. Bervik, T. Berstad, O.-G. Lademo, A. Benallal // Modelling Simul. Mater. Sci. Eng. -2007. - Vol. 15. - P. 747-772. DOI: 10.1088/0965-0393/15/7/004
  • Horvath G., Chinh N.Q., Lendvai J. Solute concentration dependence of strength and plastic instabilities in Al-Mg alloys // J. Mater. Res. - 2005. -Vol. 20, no. 2. - P. 331-337. DOI: 10.1557/JMR.2005.0040
  • Horvath G. et al. Plastic instabilities and dislocation densities during plastic deformation in Al-Mg alloys / G. Horvath, N.Q. Chinh, J. Gubicza, J. Lendvai // Materials Science and Engineering A. -2007. - Vol. 445-446 - P. 186-192. DOI: 10.1016/j.msea.2006.09.019
  • Hrutkay K., Kaoumi D. Tensile deformation behavior of a nickel based superalloy at different temperatures // Materials Science and Engineering A. - 2014. - Vol. 599. - P. 196-203. DOI: 10.1016/j.msea.2014.01.056
  • Hua L. et al. Characterization of strain rate sensitivity of 7075 aluminum alloy at different solution temperatures by novel kinetic models / L. Hua, P. Zhou, Y. Song, Q. Sun // Materials Science & Engineering B. - 2022. - Vol. 282. - P. 115751 (16 p.). DOI: 10.1016/j.mseb.2022.115751
  • Hwang S. et al. Mesoscopic nature of serration behavior in high-Mn austenitic steel / S. Hwang, M.-h. Park, Y. Bai, A. Shibata, W. Mao, H. Adachi, M. Sato, N. Tsuji // Acta Materialia. - 2021. -Vol. 205. - P. 116543 (12 p.). DOI: 10.1016/j.actamat.2020.116543
  • Ilic N. et al. Serrated yielding in Al-Li base alloys / N. Ilic, Dj. Drobnjak, V. Radmilovic, M.T. Jovanovic, D. Marko-vic // Scripta Materialia. - 1996. - Vol. 34, no. 7. - P. 1123-1130. DOI: 10.1016/1359-6462(95)00627-3
  • Jiang H. et al. Three types of Portevin - Le Chatelier effects: Experiment and modelling / H. Jiang, Q. Zhang, X. Chen, Z. Chen, Z. Jiang, X. Wu, J. Fan // Acta Materialia. - 2007. - Vol. 55, no. 7. - P. 2219-2228. DOI: 10.1016/j.actamat.2006.10.029
  • Johnson G.R., Cook W.H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures // Proceedings of the 7th International Symposium on Ballistics. - The Hague, The Netherlands, 1983. - Vol. 21. - P. 541-547.
  • Kappacher J. et al. How grain boundary characteristics influence plasticity close to and above the critical temperature of ultra-fine grained bcc Ta2.5W / J. Kappacher, O. Renk, D. Kiener, H. Clemens, V. Maier-Kiener // Acta Materialia. - 2021. -Vol. 216. - P. 117110 (11 p.). DOI: 1016/j.actamat.2021.117110
  • Kim J. et al. Constitutive modeling of the tensile behavior of Al-TWIP steel / J. Kim, Y. Estrin, H. Beladi, I. Timokhina, K.-G. Chin, S.-K.Kim, B.C. de Cooman // Metallurgical and Materials Trans. A. -2012. - Vol. 43A. - P. 479-490. DOI: 10.1007/s11661-011-0898-2
  • Klose F.B. et al. Analysis of Portevin-Le Chatelier serrations of type B in Al-Mg / F.B. Klose, A. Ziegenbein, F. Hagemann, H. Neuhäuser, P. Hähner, M. Abbadi, A. Zeghloul // Materials Science and Engineering A. - 2004a. - Vol. 369. - P. 76-81. DOI: 10.1016/j.msea.2003.10.292
  • Klose F.B. et al. Plastic instabilities with propagating deformation bands in Cu-Al alloys / F.B. Klose, J. Weidenmüller, A. Ziegenbein, P. Hähner, H. Neuhäuser // Philosophical Magazine. - 2004b. - Vol. 84, no. 3-5. - P. 467-480. DOI: 10.1080/14786430310001610320
  • Korbel A. The structural aspect of the Portevin - Le Chatelier effect in alpha brass // Scripta Metallurgica. - 1974. -Vol. 8. - P. 609-612. DOI: 10.1016/0036-9748(74)90004-0
  • Korbel A., Dybiec H. The problem of the negative strain-rate sensitivity of metals under the Portevin - Le Chatelier deformation conditions // Acta Metallurgica. - 1981. - Vol. 29. -P. 89-93. DOI: 10.1016/0001-6160(81)90089-4
  • Krishtal M.M. Strain rate sensitivity and strain macrolocalization in serrated yielding of Ai-Mg alloys // Metal Science and Heat Treatment. - 1997. - Vol. 39, no. 9-10. -P. 390-395. DOI: 10.1007/BF02469063
  • Kubin L.P., Estrin Y. The Portevin - Le Chatelier effect in deformation with constant stress rate // Acta Metall. - 1985. -Vol. 33. - P. 397-407. DOI: 10.1016/B978-0-08-031642-0.50062-3
  • Kubin L.P., Estrin Y. Strain nonuniformities and plastic instabilities // Revue Phys. Appl. - 1988. - Vol. 23. - P. 573-583. DOI: 10.1051/rphysap: 01988002304057300
  • Kubin L.P., Estrin Y. Evolution of dislocation densities and the critical conditions for the Portevin - Le Chatelier effect // Acta Metall. Mater. - 1990. - Vol. 38, no. 5. - P. 697-708. DOI: 10.1016/0956-7151(90)90021-8
  • Kumar S. Inverse behaviour of the onset strain of serrated flow // Scripta Metallurgica et Materialia. - 1995. - Vol. 33, no. 1. - P. 81-84. DOI: 10.1016/0956-716X(95)00099-H
  • Lakshmi A.A. et al. Prediction of mechanical properties of ASS 304 in superplastic region using artificial neural networks / A.A. Lakshmi, Ch.S. Rao, M. Srikanth, K.Faisal, K. Fayaz, Dr. Pus-palatha, S.K. Singh // Materials Today: Proceedings. - 2018. -Vol. 5, is. 2. - P. 3704-3712. DOI: 10.1016/j.matpr.2017.11.622
  • Lasko G., Hähner P., Schmauder S. Finite element simulation of the Portevin - Le Chatelier effect // Modelling Simul. Mater. Sci. Eng. - 2005. - Vol. 13. - P. 645-656. DOI: 10.1088/0965-0393/13/5/001
  • Lebyodkin M. et al. Statistical behaviour and strain localization patterns in the Portevin-Le Chatelier effect / M. Lebyodkin, Y. Brechetz, Y. Estrin, L. Kubin // Acta mater. - 1996. - Vol. 44, no. 11. - P. 4531-4541. DOI: 10.1016/1359-6454(96)00076-6
  • Lebyodkin M. et al. Kinetics and statistics of jerky flow: experiments and computer simulations / M. Lebyodkin, L. Dunin-Barkovskii, Y. Bréhet, L. Kubin, Y. Estrin // Materials Science and Engineering A. - 1997. - Vol. 234-236. - P. 115-118. DOI: 10.1016/S0921-5093(97)00179-2
  • Lebyodkin M.A., Dunin-Barkowskii L.R. Critical behavior and mechanism of strain correlations under conditions of unstable plastic flow // J. Experimental and theoretical physics -1998. - Vol. 86, no. 5. - P. 993-1000. DOI: 10.1134/1.558571
  • Lebyodkin M. et al. Spatio-temporal dynamics of the Portevin - Le Chatelier effect: experiment and modelling / M. Lebyodkin, L. Dunin-Barkowskii, Y. Bréchet, Y. Estrin, L.P. Kubin // Acta mater. - 2000. - Vol. 48, is. 10. - P. 25292541. DOI: 10.1016/S1359-6454(00)00067-7
  • Lebyodkin M. et al. On the similarity of plastic flow processes during smooth and jerky flow: Statistical analysis / M.A. Lebyodkin, N.P. Kobelev, Y. Bougherira, D. Entemeyer, C. Fressengeas, V.S. Gornakov, T.A. Lebedkina, I.V. Shashkov // Acta Materialia. -2012. - Vol. 60. - P. 3729-3740. DOI: 10.1016/j.actamat.2012.03.026
  • Lebyodkin M. et al. Role of superposition of dislocation avalanches in the statistics of acoustic emission during plastic deformation / M.A. Lebyodkin, I.V. Shashkov, T.A. Lebedkina, K. Mathis, P. Dobron, F. Chmelik // Physical Review E. - 2013. -Vol. 88. - P. 042402 (8 p.). DOI: 10.1103/PhysRevE.88.042402
  • Lee S.-Y. et al. Serrated flow accompanied with dynamic type transition of the Portevin - Le Chatelier effect in austenitic stainless steel / S.-Y. Lee, S. Chettri, R. Sarmah, C. Takushima, J.-i. Hamada, N. Nakada // J. Materials Science & Technology. -2023. - Vol. 133. - P. 154-164. DOI: 10.1016/j.jmst.2022.06.020
  • Legros M. et al.Observation of giant diffusivity along dislocation cores / M. Legros, G. Dehm, E. Arzt, T.J. Balk // Science. - 2008. - Vol. 319, is. 5870. - P. 1646-1649. DOI: 10.1126/science.1151771
  • Li P. et al. Neural network prediction of flow stress of Ti-15-3 alloy under hot compression / P. Li, K. Xue, Y. Lu, J. Tan // J. Materials Processing Technology. - 2004. - Vol. 148, is. 2. - P. 235-238. DOI: 10.1016/j.jmatprotec.2003.07.013
  • Li X. et al. Electroplasticity mechanism study based on dislocation behavior of Al6061 in tensile process / X. Li, Z. Xu, P. Guo, L. Peng, X. Lai // J. Alloys and Compounds. -2022. - Vol. 910. - P. 164890 (13 p.). DOI: 10.1016/j.jallcom.2022.164890
  • Van Liempt P., Sietsma J. A revised criterion for the Portevin - Le Châtelier effect based on the strain-rate sensitivity of the work-hardening rate // Metallurgical and Materials Trans. A. -2011. - Vol. 42A. - P. 4008-4014. DOI: 10.1007/s11661-011-0850-5
  • Lin Y.C. et al. Effects of initial microstructures on serrated flow features and fracture mechanisms of a nickel-based superalloy / Y.C. Lin, H. Yang, Y. Xin, C.-Z. Li // Materials Characterization. -2018. - Vol. 144. - P. 9-21. DOI: 10.1016/j.matchar.2018.06.029
  • Ling C.P., McCormick P.G. The effect of temperature on strain rate sensitivity in an Al-Mg-Si alloy // Acta Metallurgica et Materialia. - 1993. - Vol. 41(11). - P. 3127-3131. DOI:10.1016/0956-7151(93)90042-Q
  • Louat N. On the theory of the Portevin - Le Chatelier effect // Scripta Metallurgica. - 1981. - Vol.15, no. 11. - P. 11671170. DOI: 10.1016/0036-9748(81)90290-8
  • Louche H., Vacher P., Arrieux R. Thermal observations associated with the Portevin - Le Châtelier effect in an Al-Mg alloy // Materials Science and Engineering A. - 2005. -Vol. 404. - P. 188-196. DOI: 10.1016/j.msea.2005.05.058
  • Lukac P., Balik J., Chmelik F. Physical aspects of plastic instabilities // Materials Science and Engineering A. - 1997. -Vol. 234-236. - P. 45-51. DOI: 10.1016/S0921-5093(97)00178-0
  • Mäkinen T. et al. Portevin - Le Chatelier effect: modeling the deformation bands and stress-strain curves / T. Mäkinen, M. Ovas-ka, L. Laurson, M.J. Alava // Materials Theory. - 2022. - Vol. 6. -P. 15 (12 p.). DOI: 10.1186/s41313-022-00044-w
  • Manach P.Y. et al. Kinematics of Portevin - Le Chatelier bands in simple shear / P.Y. Manach, S. Thuillier, J.W. Yoon, J. Coër, H. Laurent // Int. J. Plasticity. - 2014. - Vol. 58. -P. 66-83. DOI: 10.1016/j.ijplas.2014.02.005
  • Mansouri L.Z., Thuillier S., Manach P.Y. Thermo-mechanical modeling of Portevin - Le Châtelier instabilities under various loading paths // Int. J. Mechanical Sciences. - 2016. -Vol. 115-116. - P. 676-688. DOI: 10.1016/j.ijmecsci.2016.08.001
  • Mansouri L.Z. et al. Investigation of Portevin - Le Châtelier effect during Erichsen test / L.Z. Mansouri, J. Coër, S. Thuillier, H. Laurent, P.Y. Manach // Int. J. Mater. Form. -2020. - Vol. 13. - P. 687-697. DOI: 10.1007/s12289-019-01511-5
  • Mazière M., Dierke H. Investigations on the Portevin -Le Chatelier critical strain in an aluminum alloy // Computational Materials Science. - 2012. - Vol. 52. - P. 68-72. DOI: 10.1016/j.commatsci.2011.05.039
  • Mazière M. et al. Numerical simulation of the Portevin -Le Chatelier effect in various material and at different scales / M. Mazière, S. Forest, J. Besson, H. Wang, C. Berdin // Materials Science Forum. - 2010. - Vol. 638-642. - P. 2670-2675. DOI: 10.4028/www.scientific.net/MSF.638-642.2670
  • Mazière M., Forest S. Strain gradient plasticity modeling and finite element simulation of Lüders band formation and propagation // Continuum Mech. Thermodyn. - 2015. - Vol. 27. -P. 83-104. DOI: 10.1007/s00161-013-0331-8
  • Mazière M. et al. Experimental and numerical analysis of the Lüders phenomenon in simple shear / M. Mazière, C. Luis, A. Marais, S. Forest, M. Gaspérini // Int. J. Solids and Structures. - 2017. -Vol. 106-107. - P. 305-314. DOI: 10.1016/j.ijsolstr.2016.07.026
  • Maziere M., Mortensen A., Forest S. Finite element simulation of the Portevin - Le Chatelier effect in highly reinforced metal matrix composites // Philosophical Magazine. - 2021. -Vol. 101. - P. 1471-1489 DOI: 10.1080/14786435.2021.1919331
  • McCormick P.G. The Portevin - Le Chatelier effect in an Al-Mg-Si alloy // Acta Metallurgica. - 1971. - Vol. 19. -P. 463-471. DOI: 10.1016/0001-6160(71)90170-2
  • McCormick P.G. A model for the Portevin - Le Chatelier effect in substitutional alloys // Acta Metallurgica. - 1972. - Vol. 20, is. 3. - P. 351-354. DOI: 10.1016/0001-6160(72)90028-4
  • McCormick P.G. Theory of flow localization due to dynamic strain ageing // Acta Metallurgica. - 1988 - Vol. 36, is. 12. - P. 3061-3067. DOI: 10.1016/0001-6160(88) 90043-0
  • McCormick P.G., Estrin Y. Transient flow behaviour associated with dynamic strain ageing // Scripta Metallurgica. - 1989. -Vol. 23. - P. 1231-1234. DOI: 10.1016/0036-9748(89)90332-3
  • McCormick P.G., Ling C.P. Numerical modelling of the Portevin - Le Chatelier effect // Acta Metallurgica et Materialia. - 1995. -Vol. 43, is. 5. - P. 1969-1977. DOI: 10.1016/0956-7151(94)00390-4
  • Mehenni M., Ait-Amokhtar H., Fressengeas C. Spatiotemporal correlations in the Portevin-Le Chatelier band dynamics during the type B - type C transition // Materials Science & Engineering A. - 2019. - Vol. 756. - P. 313-318. DOI: 10.1016/j.msea.2019.04.036
  • Mertens F., Franklin S.V., Marder M. Dynamics of plastic deformation fronts in an aluminum alloy // Physical Review Letters. - 1997. - Vol. 78, no. 23. - P. 4502-4505. DOI: 10.1103/PhysRevLett.78.4502
  • Mogucheva A., Yuzbekova D., Borisova Yu. Alloying dependence of Portevin - Le Chatelier effect in Al-Mg alloys // AIP Conference Proceedings. - 2018. - Vol. 2051. - P. 020201 (4 p.). DOI: 10.1063/1.5083444
  • Mola J. et al. Dynamic strain aging mechanisms in a metastable austenitic stainless steel / J. Mola, G. Luan, Q.Huang, C. Ullrich, O.Volkova, Y. Estrin // Acta Materialia. - 2021. -Vol. 212. - P. 116888 (11 p.) DOI: 10.1016/j.actamat.2021.116888
  • Monteiro S.N. et al. Relevance of dynamic strain aging under quasi-static tension on AISI 304 stainless steel / S.N. Mon-teiro, A.C.Pereira, F. de Oliveira Braga, E. de Sousa Lima, C.L. Ferreira // Materials Research. - 2017. - Vol. 20, suppl. 2. -P. 421-425. DOI: 10.1590/1980-5373-MR-2016-0910
  • Mulford R.A., Kocks U.F. New observations on the mechanisms of dynamic strain aging and of jerky flow // Acta Metallurgica. - 1979. - Vol. 27, is. 7. - P. 1125-1134. DOI: 10.1016/0001-6160(79)90130-5
  • Nagesha A. et al. Dynamic strain ageing in Inconel® Alloy 783 under tension and low cycle fatigue / A. Nagesha, S. Goyal, M. Nandagopal, P. Parameswaran, R. Sandhya, M.D. Mathew, S.K. Mannan // Materials Science and Engineering A. - 2012. -Vol. 546. - P. 34-39. DOI: 10.1016/j.msea.2012.03.018
  • Nam J.-H. et al. The mechanism of dynamic strain aging for type A serrations in tensile curves of a medium-Mn steel / J.-H. Nam, S.-K. Oh, M.-h. Park, Y.-K. Lee // Acta Materialia. - 2021. -Vol. 206. - P. 116613 (10 p.). DOI: 10.1016/j.actamat.2020.116613
  • Neelakantan K. Computer simulation of serrated yielding // Bull. Mater. Sci. - 1986. - Vol. 8, no. 2. - P. 209-216. DOI: 10.1007/BF02744185
  • Neelakantan K., Venkataraman G. Simulation of serrated yielding with noise effects included // Bull. Mater. Sci. - 1991. -Vol. 14, no. 6. - P. 1279-1307. DOI: 10.1007/BF02823236
  • Oh S.-K. et al. The mechanism of dynamic strain aging for type A serrations in tensile flow curves of Fe-18Mn-0.55C (wt.%) twinning-induced plasticity steel / S.-K. Oh, M.E. Kilic, J.-B. Seol, J.-S. Hong, A. Soon, Y.-K. Lee // Acta Materialia. -2020. - Vol. 188. - P. 366-375. DOI: 10.1016/j.actamat.2020.02.020
  • Olejarczyk-Wozenska I., Mrzyglôd B., Hojny M. Modelling the high-temperature deformation characteristics of S355 steel using artificial neural networks // Archiv. Civ. Mech. Eng. - 2023. -Vol. 23. - P. 1 (11 p.). DOI: 10.1007/s43452-022-00538-x
  • Pawelek A. On the thermodynamic criterion for the unstable motion of a source generated dislocation group // Phys. Stat. Sol. A. - 1984. - Vol. 86. - P. 27-30. DOI: 10.1002/pssa.2210860159
  • Penning P. Mathematics of the Portevin - Le Chatelier effect // Acta Metallurgica. - 1972. - Vol. 20, is. 10. - P. 11691175. DOI: 10.1016/0001-6160(72)90165-4
  • Picu R.C. A mechanism for the negative strain-rate sensitivity of dilute solid solutions // Acta Materialia. - 2004. - Vol. 52. - P. 3447-3458. DOI: 10.1016/j.actamat.2004.03.042
  • Picu R.C., Zhang D. Atomistic study of pipe diffusion in Al-Mg alloys // Acta Materialia. - 2004. - Vol. 52. - P. 161-171. DOI: 10.1016/j.actamat.2003.09.002
  • Picu R.C. et al. Strain rate sensitivity of the commercial aluminum alloy AA5182-O / R.C. Picu, G. Vincze, F. Ozturk, J.J. Gracio, F. Barlat, A.M. Maniatty // Materials Science and Engineering A. - 2005. - Vol. 390, is. 1-2. - P. 334-343. DOI: 10.1016/j.msea.2004.08.029
  • Pink E., Grinberg A. Stress drops in serrated flow curves of Al5Mg // Acta metall. - 1982. - Vol. 30. - P. 2153-2160. DOI: 10.1016/0001-6160(82)90136-5
  • Pink E., Kumar S., Tian B. Serrated flow of aluminium alloys influenced by precipitates // Materials Science and Engineering A. - 2000. - Vol. 280. - P. 17-24. DOI: 10.1016/S0921-5093(99)00650-4
  • Portevin A., Le Chatelier F. Sur un phénomène observé lors de l'essai de traction d'alliages en cours de transformation // Compt. Rend. Acad. Sci. Paris. - 1923. - Vol. 176. - P. 507-510.
  • Ranc N., Wagner D. Some aspects of Portevin - Le Châtelier plastic instabilities investigated by infrared pyrometry // Materials Science and Engineering A. - 2005. - Vol. 394. - P. 8795. DOI: 10.1016/j.msea.2004. 11.042
  • Ranc N., Wagner D. Experimental study by pyrometry of Portevin - Le Châtelier plastic instabilities - Type A to type B transition // Materials Science and Engineering A. - 2008. -Vol. 474. - P. 188-196. DOI: 10.1016/j.msea.2007.04.012
  • Ranc N. et al. Experimental studies of Portevin - Le Chatelier plastic instabilities in carbon-manganese steels by infrared pyrometry / N. Ranc, W. Dub, I. Ranc, D. Wagner // Materials Science & Engineering A. - 2016. - Vol. 663. - P. 166-173. DOI: 10.1016/j.msea.2016.03.096
  • Rashkeev S.N., Glazov M.V., Barlat F. Strain-rate sensitivity limit diagrams and plastic instabilities in a 6xxx series aluminum alloy. Part I: Analysis of temporal stress-strain serrations // Computational Materials Science. - 2002. - Vol. 24. - P. 295-309. DOI: 10.1016/S0927-0256(01)00252-X
  • Ren S.C. et al. Portevin - Le Chatelier effect triggered by complex loading paths in an Al-Cu aluminium alloy / S.C. Ren, T.F. Morgeneyer, M. Mazière, S. Forest, G. Rousselier // Philosophical Magazine. - 2018. - Vol. 99, is. 6. - P. 659-678. DOI: 10.1080/14786435. 2018.1550296
  • Reyne B., Manach P.-Y., Moës N. Macroscopic consequences of Piobert-Lüders and Portevin-Le Chatelier bands during tensile deformation in Al-Mg alloys // Materials Science & Engineering A. - 2019. - Vol. 746. - P. 187-196. DOI: 10.1016/j.msea.2019.01.009
  • Reyne B., Moës N., Manach P.-Y. A persistent modal plastic model for instabilities in Al-Mg alloys with 1D application // Int. J. Plasticity. - 2020. - Vol. 131. - P. 102713 (17 p.). DOI: 10.1016/j.ijplas.2020.102713
  • Rice J.R., Ruina A.L. Stability of steady frictional slipping // J. Applied Mechanics. - 1983. - Vol. 50. - P. 343-349. DOI: 10.1115/1.3167042
  • Rizzi E., Hähner P. On the Portevin-Le Chatelier effect: theoretical modeling and numerical results // Int. J. Plasticity. - 2004. -Vol. 20. - P. 121-165. DOI: 10.1016/S0749-6419(03)00035-4
  • Rodriguez P. Serrated plastic flow // Bull. Mater. Sci. -1984. - Vol. 6, no. 4. - P. 653-663. D0I:10.1007/BF02743993
  • Rosen A., Bodner S.R. The influence of strain rate and strain ageing on the flow stress of commercially-pure aluminium // J. Mech. Phys. Solids. - 1967. - Vol. 15, no. 1. - P. 47-62. DOI: 10.1016/0022-5096(67)90005-1
  • Rowlands B.S., Rae C., Galindo-Nava E. The Portevin -Le Chatelier effect in nickel-base superalloys: Origins, consequences and comparison to strain ageing in other alloy systems // Progress in Materials Science. - 2023. - Vol. 132. - P. 101038 (66 p.). DOI: 10.1016/j.pmatsci.2022.101038
  • Roy A.K., Pal J., Mukhopadhyay C. Dynamic strain ageing of an austenitic superalloy - Temperature and strain rate effects // Materials Science and Engineering A. - 2008. - Vol. 474. - P. 363370. DOI: 10.1016/j.msea.2007.05.056
  • Russell B. Repeated yielding in tin bronze alloys // Phil. Mag. J. Theor. Exp. Appl. Phys. Ser. 8. - 1963. - Vol. 88. -P. 615-630. DOI: 10.1080/14786436308211160
  • Sarkar A., Barat P., Mukherjee P. Investigation of Portevin - Le Chatelier effect in Al-2.5 pct Mg alloy with different microstructure // Metallurgical and Materials Trans. A. - 2013. -Vol. 44A. - P. 2604-2012. DOI: 10.1007/s11661-013-1630-1
  • Scavino G. et al. Plastic localization phenomena in a Mn-alloyed austenitic steel / G. Scavino, F. D'Aiuto, P. Matteis, P. Russo Spena, D. Firrao // Metallurgical and Materials Trans. A. - 2010. -Vol. 41A. - P. 1493-1501. DOI: 10.1007/s11661-010-0191-9
  • Scavino G. et al. Portevin - Le Chatelier effects in a high-Mn austenitic steel / G. Scavino, C. Di Salvo, P. Matteis, R. Se-sana, D. Firrao // Metallurgical and Materials Trans. A. - 2013. -Vol. 44, no. 2. - P. 787-792. DOI:10.1007/s11661-012-1445-5
  • Schwab R., Ruff V. On the nature of the yield point phenomenon // Acta Materialia. - 2013. - Vol. 61. - P. 1798-1808. DOI: 10.1016/j.actamat.2012.12.003
  • Schwink Ch., Nortmann A. The present experimental knowledge of dynamic strain ageing in binary f.c.c. solid solutions // Materials Science and Engineering A. - 1997. - Vol. 234-236. -P. 1-7. DOI: 10.1016/S0921-5093(97)00139-1
  • Sheikh H. Investigation into characteristics of Portevin -Le Chatelier effect of an Al-Mg alloy // J. Materials Engineering and Performance. - 2010. - Vol. 19(9). - P. 1264-1267. DOI: 10.1007/s11665-010-9634-0
  • Shen Y.Z., Oh K.H., Lee D.N. Serrated flow behavior in 2090 Al-Li alloy influenced by texture and microstructure // Materials Science and Engineering A. - 2006. - Vol. 435-436. -P. 343-354. DOI: 10.1016/j.msea.2006.07.058
  • Shibkov A.A. et al. Nucleation and multiplication of Savart-Masson bands in an 5456 alloy / A.A. Shibkov, A.E. Zolotov, D.V. Mi-khlik, M.A. Zheltov, A.V. Shuklinov // Russian Metallurgy (Metally). -2010. - No. 10. - P. 874-880. DOI: 10.1134/S0036029510100058
  • Shibkov A.A. et al. Morphological diagram of Savart-Mas-son bands of macrolocalized deformation / A.A. Shibkov, A.E. Zolotov, M.A. Zheltov, A.A. Denisov // Crystallography Reports. - 2012. -Vol. 57, no. 1. - P. 105-111. DOI: 10.1134/S1063774511030308
  • Shukla A.K. et al. The serrated flow and recrystallization in dispersion hardened Cu-Cr-Nb alloy during hot deformation / A.K. Shukla, S.V.S.Narayana Murty, S.C. Sharma, K. Mondal // Materials Science & Engineering A. - 2016. - Vol. 673. - P. 135140. DOI: 10.1016/j.msea.2016.07.014
  • Sleeswyk A.W. Slow strain-hardening of ingot iron // Acta Metallurgica. - 1958. - Vol. 6, is. 9. - P. 598-603. DOI: 10.1016/0001-6160(58)90101-9
  • Song Y., Voyiadjis G.Z. Constitutive modeling of dynamic strain aging for HCP metals // Europ. J. Mechanics / A Solids. - 2020. -Vol. 83. - P. 104034 (13 p.). DOI: 10.1016/j.euromechsol.2020.104034
  • Sun L., Zhang Q., Cao P. Infuence of solute cloud and precipitates on spatiotemporal characteristics of Portevin-Le Chatelier effect in A2024 aluminum alloys // Chinese Physics B. - 2009. -Vol. 18, no. 8. - P. 3500-3507. DOI: 10.1088/1674-1056/18/8/061
  • Tabachnikova E.D. et al. Mechanical properties of the CoCrFeNiMnVx high entropy alloys in temperature range 4.2-300 K / E.D. Tabachnikova, A.V. Podolskiy, M.O. Laktionova, N.A. Bereznaia, M.A. Tikhonovsky, A.S. Tortika // J. Alloys and Compounds. - 2017. -Vol. 698. - P. 501-509. DOI: 10.1016/j.jallcom.2016.12.154
  • Tamimi S., Andrade-Campos A., Pinho-da-Cruz J. Modelling the Portevin - Le Chatelier effects in aluminium alloys: a review // J. Mech. Behav. Mater. - 2015. - Vol. 24, no. 3-4. -P. 67-78. DOI: 10.1515/jmbm-2015-0008
  • Tian N. et al. Study of the Portevin - Le Chatelier (PLC) characterristics of a 5083 aluminum alloy sheet in two heat treatment states / N. Tian, G. Wang, Y. Zhou, K. Liu, G. Zhao, L. Zuo // Materials. -2018. - Vol. 11, no. 1533. - P. 1-16. DOI: 10.3390/ma11091533
  • Tiwari J. et al. Dislocation density based modelling of electrically assisted deformation process by finite element approach / J. Tiwari, V. Balaji, H. Krishnaswamy, M. Amirthalingam // Int. J. Mechanical Sciences. - 2022. - Vol. 227. - P. 107433 (16 p.). DOI: 10.1016/j.ijmecsci.2022.107433
  • Tsai C.-W. et al. Portevin - Le Chatelier mechanism in face-centered-cubic metallic alloys from low to high entropy / C.-W. Tsai, C. Lee, P.-T. Lin, X. Xie, S. Chen, R. Carroll, M. LeBlanc, B.A.W. Brinkman, P.K. Liaw, K.A. Dahmen, J.-W. Yeh // Int. J. Plasticity. - 2019. - Vol. 122. - P. 212-224. DOI: 10.1016/j.ijplas.2019.07.003
  • Vani Shankar et al. Effects of temperature and strain rate on tensile properties and activation energy for dynamic strain aging in alloy 625 / Vani Shankar, M. Valsan, K. Bhanu Sankara Rao, S.L. Mannan // Metallurgical and Materials Transactions A. -2004. - Vol. 35A. - P. 3129-3139. DOI: 10.1007/s11661-004-0057-0
  • Wang C., Xu Y., Han E. Portevin - Le Chatelier effect of LA41 magnesium alloys // Front. Mater. Sci. China. - 2007. -Vol. 1, is. 1. - P. 105-108. DOI: 10.1007/s11706-007-0019-8
  • Wang H.D. et al. Experimental and numerical study of dynamic strain ageing and its relation to ductile fracture of a C-Mn steel / H.D. Wang, C. Berdin, M. Mazière, S. Forest, C. Prioul, A. Parrot, P. Le-Delliou // Materials Science and Engineering A. -2012. - Vol. 547. - P. 19-31. DOI: 10.1016/j.msea.2012.03.069
  • Wang W. et al. Influence of temperature and strain rate on serration type transition in NZ31 Mg alloy / W. Wang, D. Wu, R. Chen, C. Lou // Trans. Nonferrous Met. Soc. China. - 2015. -Vol. 25. - P. 3611-3617. DOI: 10.1016/S1003-6326(15)64002-X
  • Wang W.H. et al. The mechanism of critical strain and serration type of the serrated flow in Mg-Nd-Zn alloy / W.H. Wang, D. Wu, S.S.A. Shah, R.S. Chen, C.S. Lou // Materials Science & Engineering A. -2016. - Vol. 649. - P. 214-221. DOI: 10.1016/j.msea2015.09.100
  • Wang W.H. et al. Effect of solute atom concentration and precipitates on serrated flow in Mg-3Nd-Zn alloy / W.H. Wang, D. Wu, R.S. Chen, X.N. Zhang // J. Materials Science & Technology. -2018. - Vol. 34. - P. 1236-1242. DOI: 10.1016/j.jmst.2017.06.004
  • Wang X. et al. On the y' precipitates of the normal and inverse Portevin-Le Châtelier effect in a wrought Ni-base superal-loy / X. Wang, G. Han, C. Cui, S. Guan, J. Li, G. Hou, Y. Zhou, X. Sun // J. Materials Science & Technology. - 2019. - Vol. 35. -P. 84-87. DOI: 10.1016/j.jmst.2018.09.014
  • Wilcox B.A., Smith G.C. The Portevin - Le Chatelier effect in hydrogen charged nickel // Acta Metallurgica. - 1964. -Vol. 12. - P. 371-376. DOI: 10.1016/0001-6160(64)90006-9
Еще
Статья научная