Методы неинвазивной оценки барьерных свойств кожи

Автор: Утц С.Р., Каракаева А.В., Галкина Е.М.

Журнал: Саратовский научно-медицинский журнал @ssmj

Рубрика: Кожные болезни

Статья в выпуске: 3 т.10, 2014 года.

Бесплатный доступ

Кожа как покровный орган обладает множеством функций, самой главной из которых является защитная. Кожный покров — важный барьер на пути воды, белков и компонентов плазмы. Эпидермис представляет собой сложную структуру, его главным компонентом считается роговой слой, препятствующий проникновению экзогенных веществ через кожу. Эпидермальный барьер не является статичной структурой. Параметры проницаемости барьера могут быть изменены различными внешними и внутренними факторами, такими, как климатические условия, физические данные, и рядом кожных и системных заболеваний. Сегодня различные неинва-зивные подходы используются для мониторинга состояния кожного барьера in vivo. Количественное измерение кожных параметров, таких, как потеря трансэпидермальной воды, уровня гидратации, рН кожи, имеет важное значение для интегральной оценки состояния эпидермального барьера. В статье представлены неинвазивные методики исследования кожного барьера in vivo.

Еще

Неинвазивные методы диагностики, трансэпидермальная потеря воды., эпидермальный барьер

Короткий адрес: https://sciup.org/14917996

IDR: 14917996

Список литературы Методы неинвазивной оценки барьерных свойств кожи

  • Соколовский Е.В., Аравийская Е.Р., Монахов К.Н. Дерматовенерология: учебник для студ. высш. мед. М: Академия, 2005; 528 с.
  • Steinhoff М, etal. Modern aspects of cutaneous neurogen-ic inflammation. Arch Dermatol 2003; 139: 1479-1488
  • Slominski A, Slominski A, Wortsman J. Endocrine Reviews 2000; 21 (5): 457-487
  • Эрнандес E., Марголина А., Петрухина А. Липидный барьер кожи и косметические средства. Косметика и медицина 2005; 6: 35-38
  • Madison КС. Barrier function of the skin: «La raison d'etre» of the epidermis. J Invest Dermatol 2003; 121: 231-241
  • Монахов K.H., Очеленко C.A. Применение современных увлажняющих средств при нарушении кожного барьера. Клиническая дерматология и венерология 2009
  • Baran R., Maibach H.I. Textbook of cosmetic Dermatology. Martin Dunitz Ltd, 1998; p. 99-167
  • Руководство по дерматокосметологии. Под ред. E.P Аравийской, E.B. Соколовского. СПб.: 000 «Издательство Фолиант», 2008; 632 с.
  • Fulton С, Anderson GM, Zasloff М, et al. Expression of human peptide antibiotics in human skin. Lancet 1997; 350: 750
  • Hubiche T., GedC, etal. Analysis of SPINK 5, KLK7and FLG genotypes in a French atopic dermatitis cohort. Acta Derm Venereol 2007; 87 (6): 499-505
  • Meyer-Hoffert U. Reddish, scaly, and itchy: how proteases and their inhibitors contribute to inflammatory skin diseases. Arch Immunol Ther Exp 2009; 52 (8): 345-354
  • Howell M, Eui Kim B, Gao P.Audrey V. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 2007; 7: 150-155
  • Palmer C.N., Irvine A.D., Terron-Kwiatkowski A., Zhao Y. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 2006; 38 (2): 441-446
  • Sandilands A., Sutherland C., Irvine A.D., McLean WH. Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci 2009; 122 (9): 1285-1294
  • Choi E.H., Man M.Q., Xu P., et al. Stratum corneum acidification is impaired in moderately aged human and murine skin. J Invest Dermatol 2007; 127 (12): 2847-2856
  • Fluhr J.W., Elias P.M. Stratum corneum pH: formation and function of the 'acid mantle'. Exogen Dermatol 2002; 1 (4): 163-175
  • Rippke F., Schreiner V., Doering T., Maibach H.I. Stratum corneum pH in atopic dermatitis: impact on skin barrier function and colonization with Staphylococcus aureus. Am J Clin Dermatol 2004; 5: 217-223
  • Vasilopoulos Y., Cork M.J., Murphy R., et al. Genetic association between an AACC insertion in the 39 UTR of the stratum corneum chymotryptic enzyme gene and atopic dermatitis. J Invest Dermatol 2004; 123: 62-66
  • Serup J., et al., eds. Handbook of non-invasive methods and the skin. 2nd ed. CRC press, 2006
  • Wilhelm K-P, et al., eds. Bioengineering of the skin: skin imaging and analysis. 2nd ed., 2007
  • Fluhr J.W., Darlenski R., Angelova-Fischer I., et al. Skin Irritation and sensitization: mechanisms and new approaches for risk assessment. Part 1: Skin irritation. Skin Pharmacol Physiol 2008; 21: 124-135
  • Zuang V., Archer G., Rona C., et al. Irritant contact dermatitis. In: Berardesca E, Picardo M, Pigatto P (Eds.). Third International Symposium on Irritant Contact Dermatitis. Medical Publishing and New Media, 1997; 55-67
  • Zuang V., Rona C., Archer G., Berardesca E. Detection of skin irritation potential of cosmetics by non-invasive measurements. Skin Pharmacol Appl Skin Physiol 2000; 13: 358-371
  • Fluhr J.W., Feingold K.R., Elias P.M. Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models. Exp Dermatol 2006; 15: 483-492
  • Atrux-Tallau N., Huynh N.T., Gardette L., et al. Effects of physical and chemical treatments upon biophysical properties and micro-relief of human skin. Arch Dermatol Res 2008
  • Endo K., Suzuki N., Yoshida O., Sato H., Fujikura Y. The barrier component and the driving force component of transepidermal water loss and their application to skin irritant tests. Skin Res Technol 2007; 13: 425-435
  • Chamlin S.L., Kao J., Frieden I.J., et al. Ceramide-dominant barrier repair lipids alleviate childhood atopic dermatitis: changes in barrier function provide a sensitive indicator of disease activity. J Am Acad Dermatol 2002; 47: 198-208
  • Rim J.H., Jo S.J., Park J.Y., Park B.D., Youn J.l. Electrical measurement of moisturizing effect on skin hydration and barrier function in psoriasis patients. Clin Exp Dermatol 2005; 30: 409-413
  • Angelova-Fischer I., Bauer A., Hipler U.C., et al. The objective severity assessment of atopic dermatitis (OSAAD) score: validity, reliability and sensitivity in adult patients with atopic dermatitis. Br J Dermatol 2005; 153: 767-773
  • Tupker R.A. Prediction of irritancy in the human skin irri-tancy model and occupational setting. Contact Dermatitis 2003; 49:61-69
  • Breternitz M., Kowatzki D., Langenauer M., Eisner P., Fluhr J.W. Placebocontrolled, double-blind, randomized, prospective study of a glycerol-based emollient on eczematous skin in atopic dermatitis: biophysical and clinical evaluation. Skin Pharmacol Physiol 2007; 21: 39-45
  • Engel K., Reuter J., Seiler C., et al. Antiinflammatory effect of pimecrolimus in the sodium lauryl sulphate test. J Eur Acad Dermatol Venereol 2008; 22: 447-450
  • Nuutinen J. Measurement of transepidermal loss by closed-chamber systems. In: Serup J, Jemec GBE, Grove GL (Eds.). Non-invasive methods and the skin, CRC Press, Taylor & Francis Group, LLC, 2006; p. 393-396
  • Pinnagoda J., Tupker R.A., Agner T., Serup J. Guidelines for transepidermal water loss (TEWL) measurement, a report from the standardization group of the european society of Contact Dermatitis. Contact Dermatitis 1990; 22: 164-178
  • Rogiers V. EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences. Skin Pharmacol Appl Skin Physiol 2001; 14: 117-128
  • Smith H.R., Rowson M., Basketter DA, McFadden JP Intra-individual variation of irritant threshold and relationship to transepidermal water loss measurement of skin irritation. Contact Dermatitis 2004; 51: 26-29
  • Freeman S., Maibach H. Study of irritant contact dermatitis produced by repeat patch test with sodium lauryl sulfate and assessed by visual methods: Transepidermal water loss, and laser Dopplervelocimetry. J Am Acad Dermatol 1988; 19:496-502
  • Tupker R.A, Pinnagoda J., Coenraads P.J., Nater J.P. The influence of repeated exposure to surfactants on the human skin as determined by transepidermal water loss and visual scoring. Contact Dermatitis 1989; 20: 108-114
  • Fluhr J.W., Kuss O., Diepgen T., et al. Testing for irritation with a multifactorial approach: comparison of eight non-invasive measuring techniques on five different irritation types. Br J Dermatol 2001; 145:696-703
  • Seidenari S., Francomano M, Mantovani L. Baseline biophysical parameters in subjects with sensitive skin. Contact Dermatitis 1998; 38: 311-315
  • Wu Y., Wang X., Zhou Y., et al. Correlation between stinging, TEWL and capacitance. Skin Res Technol 2003; 9: 90-93
  • Chrit L., Bastien P., Sockalingum G.D., et al. An in vivo randomized study of human skin moisturization by a new confocal Raman fiber-optic microprobe: assessment of a glycerol-based hydration cream. Skin Pharmacol Physiol 2006; 19: 207-215
  • Verdier-Sevrain S., Bonte F. Skin hydration: a review on its molecular mechanisms. J Cosmet Dermatol 2007; 6: 75-82
  • Tupker R.A., Pinnagoda J., Coenraads P.J., Nater J.P. Susceptibility to irritants: role of barrier function, Skin dryness and history of atopic dermatitis. Br J Dermatol 1990; 123: 199-205
  • Edwards C., Marks R. Hydration and atopic dermatitis. In: Fluhr J, Eisner P, Berardesca E, Maibach HI (Eds.). Bioengineer-ing of the Skin-Water and Stratum Corneum. CRC Press LLC 2005; 323-330
  • Rawlings A.V., Harding C.R. Moisturization and skin barrier function. Dermatol Ther2004; 17: 43-48
  • Mize M.M., Aguirre Vila-Coro A., Prager T.C. The relationship between postnatal skin maturation and electrical skin impedance. Arch Dermatol 1989; 125: 647-650
  • Obata M., Tagami H. Electrical determination of water content and concentration profile in a simulation model of in vivo stratum corneum. J Invest Dermatol 1989; 92: 854-859
  • Sugarman J.L., Fluhr J.W., Fowler A.J., et al. The objective severity assessment of atopic dermatitis score: an objective measure using permeability barrier function and stratum corneum hydration with computer-assisted estimates for extent of disease. Arch Dermatol 2003; 139: 1417-1422
  • Cua A.B., Wlhelm K.P., Maibach H.I. Skin surface lipid and skin friction: relation to age, Sex and anatomical region. Skin Pharmacol 1995; 8: 246-251
  • Gloor M. Senger B., Langenauer M., Fluhr J.W. On the course of the irritant reaction after irritation with sodium lauryl sulphate. Skin Res Technol 2004; 10: 144-148
  • Breternitz M., Kowatzki D., Langenauer M., Eisner P., Fluhr J.W. Placebocontrolled, Double-blind, randomized, prospective study of a glycerol-based emollient on eczematous skin in atopic dermatitis: biophysical and clinical evaluation, Skin Pharmacol Physiol 2008; 21: 39-45
  • Jemec G.B, Na R. Hydration and plasticity following long-term use of a moisturizer: a single-blind study. Acta Derm Venereol 2002; 82: 322-324
  • Egawa M., Hirao T., Takahashi M. In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy. Acta Derm Venereol 2007; 87: 4-8
  • Caspers P.J., Lucassen G.W., Carter E.A., Bruining H.A., Pup-pels G.J. In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. J Invest Dermatol 2001; 116: 434-442
  • Caspers P.J., Lucassen G.W., Puppels G.J. Combined in vivo confocal Raman spectroscopy and confocalmicroscopy of human skin. Biophys J 2003; 85: 572-580
  • Warner R.R., Myers M.C., Taylor D.A. Electron probe analysis of human skin: determination of the water concentration profile. J Invest Dermatol 1988; 90: 218-224
  • Caspers P.J., Williams A.C., Carter E.A., et al. Monitoring the penetration enhancer dimethyl sulfoxide in human stratum corneum in vivo by confocal Raman spectroscopy. Pharm Res 2002; 19: 1577-1580
  • Pudney P.D., Melot M., Caspers P.J., Van Der Pol A, Pup-pels G.J. An in vivo confocal Raman study of the delivery of trans retinol to the skin. Appl Spectrosc 2007; 61: 804-811
  • Hata T.R., Scholz Т.А., Ermakov I.V., et al. Non-invasive Raman spectroscopic detection of carotenoids in human skin. J Invest Dermatol 2000; 115: 441-448
  • Мяделец О.Д., Адаскевич В.П. Морфофункциональная дерматология. М.: Медлит, 2006; 752 с.
  • Schmid-Wendtner М.Н., Korting Н.С. The рН of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol 2006; 19:296-302
  • Mauro T., Holleran W.M., Grayson S., et al. Barrier recovery is impeded at neutral pH, Independent of ionic effects: implications for extracellular lipid processing. Arch Dermatol Res 1998; 290: 215-222
  • Hanson K.M., Behne M.J., Barry N.P., et al. Twophoton fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys J 2002; 83: 1682-1690
  • Wagner H., Kostka K.H., Lehr CM, Schaefer UF. PH profiles in human skin:influence of two in vitro test systems for drug delivery testing. Eur J Pharm Biopharm 2003; 55: 57-65
  • Ehlers C., Ivens U.L., Moller M.L., Senderovitz T., Serup J. Comparison of two pH meters used for skin surface pH measurement: the pH meter 'pH900' from Courage & Khazaka versus the pH meter '1140' from Mettler Toledo. Skin Res Technol 2001
  • Fluhr J.W., Elias P.M. Stratum corneum pH: formation and function of the 'Acid Mantle'. Exogenous Dermatol 2002; 163-175
  • Hachem J.P., Crumrine D., Fluhr J., et al. PH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Invest Dermatol 2003; 121: 345-353
  • Hachem J.P., Man M.Q., Crumrine D., et al. Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneumintegrity. J Invest Dermatol 2005; 125:510-520
  • Schade H., Marchionini A., Der Sauremantel der Haut (nach Gaskettenmessung). Klin Wschr 1928; 7: 12-14
  • Гусев В.Г., Мустафин Т.Н. Измерительные приборы для оценки физических свойств кожного покрова человека. Вестник УГАТУ; 13 (34): 187-192
  • Dolotov L.E., Sinichkin Yu.P., Tuchin V.V., Utz S.R., Altshuler G.B. et al. Design and evaluation of a novel portable erythema-melanin-meter. Surgery and Laserin Medicine. 2004; 34: 127-135
Еще
Статья научная