Методы ранней диагностики рака легкого (обзор литературы)
Автор: Родионов Евгений Олегович, Тузиков Сергей Александрович, Миллер Сергей Викторович, Кульбакин Денис Евгеньевич, Чернов Владимир Иванович
Журнал: Сибирский онкологический журнал @siboncoj
Рубрика: Обзоры
Статья в выпуске: 4 т.19, 2020 года.
Бесплатный доступ
Цель исследования - обобщение мирового опыта скрининга рака легкого с использованием современных методов диагностики. Материал и методы. Поиск литературы производился в системах Medline, Cochrane Library, Elibrary и pubMed, включались публикации, характеризующие современные возможности лабораторных, инструментальных и молекулярно-генетических методов ранней диагностики рака легкого, 58 из которых были использованы для написания данного обзора. Результаты. В обзоре освещены результаты международных рандомизированных исследований скрининга рака легкого с использованием цитологического анализа мокроты и низкодозной компьютерной томографии. Особое внимание уделено описанию современных молекулярно-генетических биомаркеров рака легкого, таких как эпигенетические маркеры, микроРНК, использование технологии протеомики, метаболомики, исследование микробиома, биомаркеров из жидкостной биопсии. Проведен анализ мировой литературы, подтверждающий перспективность методов неинвазивной диагностики опухолевых процессов, основанных на анализе выдыхаемого воздуха. Заключение. Использование современных методов скрининга позволит добиться значительного улучшения эффективности ранней диагностики и, как следствие, лечения рака. Начало лечения на ранних стадиях позволяет существенно увеличить шансы пациента на выздоровление и быстрейшую социальную и трудовую адаптацию. В качестве неинвазивного метода диагностики рака может выступать электронный нос - совокупность газовых датчиков и определенного метода обработки информации. Электронный нос на основе относительно дешевых газовых сенсоров обладает соизмеримой точностью, легкостью сбора данных, мобильностью и другими преимуществами по сравнению с вышеуказанными устройствами.
Рак легкого, скрининг, низкодозная компьютерная томография, летучие органические соединения, анализ выдыхаемого воздуха, электронный нос
Короткий адрес: https://sciup.org/140254359
IDR: 140254359 | DOI: 10.21294/1814-4861-2020-19-4-112-122
Список литературы Методы ранней диагностики рака легкого (обзор литературы)
- Globocan 2018 [Internet]. Lyon, France: International Agency for Research on Cancer. Internet: http://globocan.iarc.fr (cited 13.03.2020).
- Allemani C., Matsuda T., Di Carlo V., HarewoodR., MatzM., Niksic M, Bonaventure A., Valkov M., Johnson C.J., Esteve J., Ogunbiyi O.J., AzevedoE., Silva G., Chen W.Q., Eser S., Engholm G., Stiller C.A., Mon-nereau A., Woods R.R., Visser O., Lim G.H., Aitken J., Weir H.K., Coleman M.P.; CONCORD Working Group. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018; 391(10125): 1023-75. doi: 10.1016/S0140-6736(17)33326-3.
- GervasP., Ivanova A., VasilievN., Ananina O., Cheremisina O., Pop-ova N., Goldberg V., ChoynzonovE., CherdyntsevaN., Zharkova O., Rogo-vievaO., VerzhbitskayaN., Didichuk I., CherdyntsevE. Frequency ofEGFR mutations in non-small cell lung cancer patients: screening data from West Siberia. Asian Pac J Cancer Prev. 2015; 16(2): 689-692. doi: 10.7314/AP-JCP.2015.16.2.689
- Юмов Е.Л., Миллер С.В., Литвяков Н.В., Полищук Т.В., Тузиков С.А., Черемисина О.В., Гольдберг В.Е., Родионов Е.О. Химиотерапия в комбинированном лечении местнораспространенного немелкоклеточного рака легкого. Сибирский онкологический журнал. 2014; 2: 9-13. [YumovE.L., Miller S.V., LitvyakovN.V., Polischuk Т. К, Tu-zikov S.A., Cheremisina O.V., Goldberg V.E., Rodionov Е.О. Chemotherapy in combined modality treatment for locally advamced non-small cell lung cancer. Siberian Journal of Oncology. 2014; 2: 9-13. (in Russian)].
- Doria-Rose VP., Marcus PM., SzaboE., TockmanM.S., MelamedM.R., ProrokP.C. Randomized controlled trials of the efficacy of lung cancer screening by sputum cytology revisited: a combined mortality analysis from the Johns Hopkins Lung Project and the Memorial Sloan-Kettering Lung Study. Cancer. 2009; 115(21): 5007-5017. doi: 10.1002/cncr.24545.
- FontanaR.S., SandersonD.R., WoolnerL.B., Taylor W.F., Miller W.E., Muhm J.R. Lung cancer screening: the Mayo program. J Occup Med. 1986; 28(8): 746-750.
- Melamed M.R., Flehinger B.J., Zaman M.B., Heelan R.T., Per-chick W.A., Martini N. Screening for early lung cancer. Results of the Memorial SloanKettering study in New York. Chest. 1984; 86: 44-53.
- OkenM.M., MarcusP.M., HuP., Beck T.M., Hocking W., KvaleP.A., Cordes J., Riley T.L., Winslow S.D., Peace S., Levin D.L., Prorok P.C., Gohagan J.K. Baseline chest radiograph for lung cancer detection in the randomized Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. J Natl Cancer. Inst. 2005; 97(24): 1832-1839. doi: 10.1093/jnci/dji430.
- Gouvinhas C., De Mello R.A., Oliveira D. Lung cancer: a brief review of epidemiology and screening. Future Oncol. 2018 Mar; 14(6): 567-575. doi: 10.2217/fon-2017-0486
- National Lung Screening Trial Research Team, Aberle D.R., Adams A.M., Berg C.D., B.lack W.C., Clapp J.D., Fagerstrom R.M., Gareen I.F., Gatsonis C., Marcus P.M., Sicks J.D. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011 Aug 4; 365(5): 395-409. doi: 10.1056/NEJMoa1102873.
- De Koning H., Van Der Aalst C., Ten Haaf K., Oudkerk M. PL02.05 Effects of volume ct lung cancer screening: mortality results of the nelson randomised-controlled population based trial. J Thorac Oncol. 2018; 13(10): S185.
- Manser R., LethabyA., Irving L.B., Stone C., Byrnes G., Abram-son M.J., Campbell D. Screening for lung cancer. Cochrane Database Syst Rev. 2013 Jun 21; 2013(6): CD001991. doi: 10.1002/14651858. CD001991.pub3.
- Black W.C., Gareen I.F., Soneji S.S., Sicks J.D., KeelerE.B., Aberle D.R., Naeim A., Church T.R., Silvestri G.A., Gorelick J., Gatsonis C.; National Lung Screening Trial Research Team. Cost-effectiveness of CT screening in the National Lung Screening Trial. N Engl J Med. 2014 Nov 6; 371(19): 1793-802. doi: 10.1056/NEJMoa1312547.
- International Early Lung Cancer Action Program Investigators, Henschke C.I., YankelevitzD.F., LibbyD.M., PasmantierM. W., Smith J.P., Miettinen O.S. Survival of patients with stage I lung cancer detected on CT screening. N Engl J Med. 2006 Oct 26; 355(17): 1763-71. doi: 10.1056/ NEJMoa060476.
- Brenner D.J. Radiation risks potentially associated with low-dose CT screening of adult smokers for lung cancer. Radiology. 2004 May; 231(2): 440-5. doi: 10.1148/radiol.2312030880.
- Wang Memoli J.S., Nietert P.J., Silvestri G.A. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule. Chest. 2012 Aug; 142(2): 385-393. doi: 10.1378/chest.11-1764.
- BiomarkersDefinitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001 Mar; 69(3): 89-95. doi: 10.1067/mcp.2001.113989.
- Calabrese F., Lunardi F., Pezzuto F., Fortarezza F., Vuljan S.E., Marquette C., HofmanP. Are There New Biomarkers in Tissue and Liquid Biopsies for the Early Detection of Non-Small Cell Lung Cancer? J Clin Med. 2019 Mar 26; 8(3): 414. doi: 10.3390/jcm8030414.
- Huang T., Li J., Zhang C., Hong Q., Jiang D., Ye M., Duan S. Distinguishing Lung Adenocarcinoma from Lung Squamous Cell Carcinoma by Two Hypomethylated and Three Hypermethylated Genes: A Meta-Analysis. PLoS One. 2016 Feb 10; 11(2): e0149088. doi: 10.1371/ journal.pone.0149088.
- Liu F., Zhang H., Lu S., Wu Z., Zhou L., Cheng Z., Bai Y., Zhao J., Zhang Q., Mao H. Quantitative assessment of gene promoter methylation in non-small cell lung cancer using methylation-sensitive high-resolution melting. Oncol Lett. 2018 May; 15(5): 7639-7648. doi: 10.3892/ol.2018.8321.
- IlseP., BiesterfeldS., PomjanskiN., Wrobel C., SchrammM. Analysis of SHOX2 methylation as an aid to cytology in lung cancer diagnosis. Cancer Genomics Proteomics. 2014 Sep-Oct; 11(5): 251-8.
- Inamura K., Ishikawa Y. MicroRNA In Lung Cancer: Novel Biomarkers and Potential Tools for Treatment. J Clin Med. 2016; 5(3): 36. doi: 10.3390/jcm5030036.
- Lu A., Zhang L. Tumor-Dependent and -Independent Serum/Plasma Biomarkers for Early Diagnosis of Lung Cancer. Transl Med. 2016; 6(1): 160. doi: 10.4172/2161-1025.1000160
- Kim J.O., Gazala S., Razzak R., Guo L., Ghosh S., Roa W.H., Bédard E.L. Non-small cell lung cancer detection using microRNA expression profiling of bronchoalveolar lavage fluid and sputum. Anticancer Res. 2015 Apr; 35(4): 1873-80.
- Bagheri A., KhorshidH.R.K., TavallaieM., Mowla S.J., Sherafa-tian M., Rashidi M., Zargari M., Boroujeni M.E., Hosseini S.M. A panel of noncoding RNAs in non-small-cell lung cancer. J Cell Biochem. 2018 Nov 28. doi: 10.1002/jcb.28111.
- Codreanu S.G., HoeksemaM.D., SlebosR.J.C., ZimmermanL.J., Rahman S.M.J., Li M., Chen S.C., Chen H., Eisenberg R., Liebler D.C., Massion P.P. Identification of Proteomic Features To Distinguish Benign Pulmonary Nodules from Lung Adenocarcinoma. J Proteome Res. 2017 Sep 1; 16(9): 3266-3276. doi: 10.1021/acs.jproteome.7b00245.
- Nan Y., Du J., Ma L., Jiang H., Jin F., Yang S. Early Candidate Biomarkers of Non-Small Cell Lung Cancer Are Screened and Identified in Premalignant Lung Lesions. Technol Cancer Res Treat. 2017 Feb; 16(1): 66-74. doi: 10.1177/1533034615627391.
- Li T., He J., Mao X., Bi Y., Luo Z., Guo C., Tang F., Xu X., Wang X., Wang M., Chen J., Abliz Z. In situ biomarker discovery and label-free molecular histopathological diagnosis of lung cancer by ambient mass spectrometry imaging. Sci Rep. 2015 Sep 25; 5: 14089. doi: 10.1038/srep14089.
- Moreno P., Jiménez-Jiménez C., Garrido-Rodríguez M., Calderón-Santiago M., Molina S., Lara-Chica M., Priego-Capote F., Salvatierra A., Muñoz E., Calzado M.A. Metabolomic profiling of human lung tumor tissues nucleotide metabolism as a candidate for therapeutic interventions and biomarkers. Mol Oncol. 2018 Oct; 12(10): 1778-1796. doi: 10.1002/1878-0261.12369.
- Yu G., GailM.H., ConsonniD., CarugnoM., HumphrysM., Pesa-tori A.C., Caporaso N.E., Goedert J.J., Ravel J., Landi M.T. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol. 2016 Jul 28; 17(1): 163. doi: 10.1186/ s13059-016-1021-1.
- Cameron S.J.S., LewisK.E., Huws S.A., HegartyM.J., LewisP.D., Pachebat J.A., MurL.A.J. A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancer. PLoS One. 2017 May 25; 12(5): e0177062. doi: 10.1371/journal. pone.0177062.
- Hofman V., IlieM.I., Long E., SelvaE., Bonnetaud C., Molina T., Vénissac N., Mouroux J., Vielh P., Hofman P. Detection of circulating tumor cells as a prognostic factor in patients undergoing radical surgery for non-small-cell lung carcinoma: comparison of the efficacy of the CellSearch Assay™ and the isolation by size of epithelial tumor cell method. Int J Cancer. 2011 Oct 1; 129(7): 1651-60. doi: 10.1002/ijc.25819.
- Xue Y., Cong W., Xie S., Shu J., Feng G., Gao H. Folate-receptor-positive circulating tumor cells as an efficacious biomarker for the diagnosis of small pulmonary nodules. J Cancer Res Ther. 2018; 14(7): 1620-1626. doi: 10.4103/jcrt.JCRT_905_17.
- Ilie M., Hofman V, Long-Mira E., Selva E., Vignaud J.M., Pado-vani B., Mouroux J., Marquette C.H., Hofman P. «Sentinel» circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS One. 2014 Oct 31; 9(10): e111597. doi: 10.1371/journal.pone.0111597.
- Shen J., Liu Z., Todd N.W., Zhang H., Liao J., Yu L., Guarnera M.A., Li R., Cai L., Zhan M., Jiang F. Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers. BMC Cancer. 2011 Aug 24; 11: 374. doi: 10.1186/1471-2407-11-374.
- Yu H., Guan Z., Cuk K., Brenner H., Zhang Y. Circulating mi-croRNA biomarkers for lung cancer detection in Western populations. Cancer Med. 2018 Oct; 7(10): 4849-4862. doi: 10.1002/cam4.1782.
- JinX., Chen Y., Chen H., Fei S., Chen D., Cai X., Liu L., Lin B., Su H., Zhao L., Su M., Pan H., Shen L., Xie D., Xie C. Evaluation of Tumor-Derived Exosomal miRNA as Potential Diagnostic Biomarkers for Early-Stage Non-Small Cell Lung Cancer Using Next-Generation Sequencing. Clin Cancer Res. 2017 Sep 1; 23(17): 5311-5319. doi: 10.1158/1078-0432.CCR-17-0577.
- Hulbert A., Jusue-TorresI., StarkA., Chen C., RodgersK., LeeB., Griffin C., Yang A., Huang P., Wrangle J., Belinsky S.A., Wang T.H., Yang S.C., Baylin S.B., Brock M.V., Herman J.G. Early Detection of Lung Cancer Using DNA Promoter Hypermethylation in Plasma and Sputum. Clin Cancer Res. 2017 Apr 15; 23(8): 1998-2005. doi: 10.1158/1078-0432.CCR-16-1371.
- Vykoukal J., SunN., Aguilar-Bonavides C., KatayamaH., TanakaI., Fahrmann J.F., Capello M., Fujimoto J., Aguilar M., Wistuba I.I., TaguchiA., OstrinE.J., Hanash S.M. Plasma-derived extracellular vesicle proteins as a source of biomarkers for lung adenocarcinoma. Oncotarget. 2017 Sep 8; 8(56): 95466-95480. doi: 10.18632/oncotarget.20748.
- Jia Z., Patra A., Kutty V.K., Venkatesan T. Critical Review of Volatile Organic Compound Analysis in Breath and In Vitro Cell Culture for Detection of Lung Cancer. Metabolites. 2019 Mar 18; 9(3): 52. doi: 10.3390/metabo9030052.
- Gordon S.M., Szidon J.P., Krotoszynski B.K., Gibbons R.D., O'Neill H.J. Volatile organic compounds in exhaled air from patients with lung cancer. Clin Chem. 1985 Aug; 31(8): 1278-82.
- Feinberg T., Alkoby-Meshulam L., Herbig J., Cancilla J.C., Torrecilla J.S., Gai Mor N., Bar J., Ilouze M., Haick H., Peled N. Cancerous glucose metabolism in lung cancer-evidence from exhaled breath analysis. J Breath Res. 2016 Jun 7; 10(2): 026012. doi: 10.1088/17527155/10/2/026012.
- HandaH., Usuba A., Maddula S., Baumbach J.I., MineshitaM., Miyazawa T. Exhaled breath analysis for lung cancer detection using ion mobility spectrometry. PLoS One. 2014 Dec 9; 9(12): e114555. doi: 10.1371/journal.pone.0114555.
- PhillipsM., CataneoR.N., Cummin A.R., GagliardiA.J., GleesonK., Greenberg J., Maxfield R.A., Rom W.N. Detection of lung cancer with volatile markers in the breath. Chest. 2003; 123(6): 2115-23. doi: 10.1378/ chest.123.6.2115.
- Wang C., Dong R., Wang X., Lian A., Chi C., Ke C., Guo L., Liu S., Zhao W., Xu G., Li E. Exhaled volatile organic compounds as lung cancer biomarkers during one-lung ventilation. Sci Rep. 2014 Dec 8; 4: 7312. doi: 10.1038/srep07312.
- Peralbo-Molina A., Calderón-Santiago M., Priego-Capote F., Jurado-Gámez B., Luque de Castro M.D. Identification of metabolomics panels for potential lung cancer screening by analysis of exhaled breath condensate. J Breath Res. 2016 Mar 23; 10(2): 026002. doi: 10.1088/17527155/10/2/026002.
- Hakim M., Broza Y.Y., Barash O., PeledN., Phillips M., Amann A., Haick H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem Rev. 2012 Nov 14; 112(11): 5949-66. doi: 10.1021/cr300174a.
- de Lacy Costello B., Amann A., Al-Kateb H., Flynn C., Filipiak W., Khalid T., Osborne D., Ratcliffe N.M. A review of the volatiles from the healthy human body. J Breath Res. 2014 Mar; 8(1): 014001. doi: 10.1088/1752-7155/8/1/014001.
- Ajibola O.A., Smith D., Spanel P., Ferns G.A. Effects of dietary nutrients on volatile breath metabolites. J Nutr Sci. 2013 Oct 31; 2: e34. doi: 10.1017/jns.2013.26.
- Trefz P., Kamysek S., Fuchs P., Sukul P., Schubert J.K., Mieki-sch W. Drug detection in breath: non-invasive assessment of illicit or pharmaceutical drugs. J Breath Res. 2017 Mar 20; 11(2): 024001. doi: 10.1088/1752-7163/aa61bf.
- Schulz S., Dickschat J.S. Bacterial volatiles: the smell of small organisms. Nat Prod Rep. 2007 Aug; 24(4): 814-42. doi: 10.1039/ b507392h.
- Beauchamp J. Inhaled today, not gone tomorrow: pharmacokinetics and environmental exposure of volatiles in exhaled breath. J Breath Res. 2011; 5(3): 037103. doi: 10.1088/1752-7155/5/3/037103.
- HaickH., Broza F.F., MochalskiP., Ruzsanyi V., AmannA. Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev. 2014 Mar 7; 43(5): 1423-49. doi: 10.1039/c3cs60329f.
- Buist H.E., Wit-Bos L.D., Bouwman T., Vaes W.H. Predicting blood: air partition coefficients using basic physicochemical properties. Regul Toxicol Pharmacol. 2012 Feb; 62(1): 23-8. doi: 10.1016/j. yrtph.2011.11.019.
- Schubert J.K., Miekisch W., Birken T., GeigerK., Nöldge-Schom-burg G.F. Impact of inspired substance concentrations on the results of breath analysis in mechanically ventilated patients. Biomarkers. 2005 Mar-Jun; 10(2-3): 138-52. doi: 10.1080/13547500500050259.
- Spanel P., Dryahina K., Smith D. A quantitative study of the influence of inhaled compounds on their concentrations in exhaled breath. J Breath Res. 2013 Mar; 7(1): 017106. doi: 10.1088/17527155/7/1/017106.
- Doran S.L.F., Romano A., Hanna G.B. Optimisation of sampling parameters for standardised exhaled breath sampling. J Breath Res. 2017 Dec 6; 12(1): 016007. doi: 10.1088/1752-7163/aa8a46..
- Poli D., Carbognani P., Corradi M., Goldoni M., Acampa O., Balbi B., Bianchi L., Rusca M., Mutti A. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Respir Res. 2005 Jul 14; 6(1): 71. doi: 10.1186/1465-9921-6-71.
- Peng G., Hakim M., Broza F.F., Billan S., Abdah-Bortnyak R., Kuten A., Tisch U., Haick H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer. 2010 Aug 10; 103(4): 542-51. doi: 10.1038/sj.bjc.6605810.
- Kischkel S., Miekisch W., Sawacki A., Straker E.M., Trefz P., Amann A., Schubert J.K. Breath biomarkers for lung cancer detection and assessment of smoking related effects--confounding variables, influence of normalization and statistical algorithms. Clin Chim Acta. 2010 Nov 11; 411(21-22): 1637-44. doi: 10.1016/j.cca.2010.06.005.
- Birken T., Schubert J., Miekisch W., Nöldge-Schomburg G. A novel visually CO2 controlled alveolar breath sampling technique. Technol Health Care. 2006; 14(6): 499-506.
- Bikov A., Paschalaki K., Logan-Sinclair R., Horvâth I., Kharito-nov S.A., Barnes P. J., Usmani O.S., Paredi P. Standardised exhaled breath collection for the measurement of exhaled volatile organic compounds by proton transfer reaction mass spectrometry. BMC Pulm Med. 2013 Jul 9; 13: 43. doi: 10.1186/1471-2466-13-43.
- Boshier P.R., Priest O.H., Hanna G.B., Marczin N. Influence of respiratory variables on the on-line detection of exhaled trace gases by PTR-MS. Thorax. 2011 Oct; 66(10): 919-20. doi: 10.1136/thx.2011.161208.
- Lärstad M.A., Toren K., Bake B., Olin A.C. Determination of ethane, pentane and isoprene in exhaled air--effects of breath-holding, flow rate and purified air. Acta Physiol (Oxf). 2007; 189(1): 87-98. doi: 10.1111/j.1748-1716.2006.01624.x.
- Herbig J., Titzmann T., Beauchamp J., Kohl I., Hansel A. Buffered end-tidal (BET) sampling-a novel method for real-time breath-gas analysis. J Breath Res. 2008 Sep; 2(3): 037008. doi: 10.1088/17527155/2/3/037008.
- Sukul P., Schubert J.K., Kamysek S., Trefz P., Miekisch W. Applied upper-airway resistance instantly affects breath components: a unique insight into pulmonary medicine. J Breath Res. 2017 Nov 1; 11(4): 047108. doi: 10.1088/1752-7163/aa8d86.
- Thekedar B., Oeh U., Szymczak W., Hoeschen C., Paretzke H.G. Influences of mixed expiratory sampling parameters on exhaled volatile organic compound concentrations. J Breath Res. 2011 Mar; 5(1): 016001. doi: 10.1088/1752-7155/5/1/016001.
- Wang Y., Hu Y., Wang D., Yu K., Wang L., Zou Y., Zhao C., Zhang X., Wang P., Ying K. The analysis of volatile organic compounds biomarkers for lung cancer in exhaled breath, tissues and cell lines. Cancer Biomark. 2012; 11(4): 129-37. doi: 10.3233/CBM-2012-00270.
- Jordan A., Hansel A., Lindinger W., Holzinger R. Acetonitrile and benzene in the breath of smokers and non-smokers investigated by proton transfer reaction mass spectrometry (PTR-MS). Int. J. Mass Spectrom. Ion Process. 1995; 148: 68-70. doi:10.1016/0168-1176(95)04236-E.
- Euler D.E., Dave S.J., Guo H. Effect of cigarette smoking on pentane excretion in alveolar breath. Clin Chem. 1996 Feb; 42(2): 303-8.
- Zou Y., Zhang X., Chen X., Hu Y., Ying K., Wang P. Optimization of volatile markers of lung cancer to exclude interferences of non-malignant disease. Cancer Biomark. 2014; 14(5): 371-9. doi: 10.3233/ CBM-140418.
- Corradi M., Poli D., Banda I., Bonini S., Mozzoni P., Pinelli S., Alinovi R., Andreoli R., Ampollini L., Casalini A., Carbognani P., Goldoni M., Mutti A. Exhaled breath analysis in suspected cases of non-small-cell lung cancer: a cross-sectional study. J Breath Res. 2015 Jan 29; 9(2): 027101. doi: 10.1088/1752-7155/9/2/027101.
- Horvath I., Barnes P.J., Loukides S., Sterk P.J., Högman M., Olin A.C., Amann A., Antus B., Baraldi E., Bikov A., Boots A.W., Bos L.D., Brinkman P., Bucca C., Carpagnano G.E., Corradi M., Cristescu S., de Jongste J.C., Dinh-Xuan A.T., Dompeling E., Fens N., Fowler S., Hohlfeld J.M., Holz O., Jöbsis Q., Van De Kant K., Knobel H.H., Kos-tikas K., Lehtimäki L., Lundberg J., Montuschi P., Van Muylem A., Pennazza G., Reinhold P., Ricciardolo F.L.M., Rosias P., Santonico M., van der Schee M.P., van Schooten F.J., Spanevello A., Tonia T., Vink T.J. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J. 2017 Apr 26; 49(4): 1600965. doi: 10.1183/13993003.00965-2016.
- Li Z., Askim J.R., SuslickK.S. The Optoelectronic Nose: Colori-metric and Fluorometric Sensor Arrays. Chem Rev. 2019 Jan 9; 119(1): 231-292. doi: 10.1021/acs.chemrev.8b00226.
- Behera B., Joshi R., Anil Vishnu G.K., Bhalerao S., Pandya H.J. Electronic nose: A non-invasive technology for breath analysis of diabetes and lung cancer patients. J Breath Res. 2019 Mar 6; 13(2): 024001. doi: 10.1088/1752-7163/aafc77.