MHD waves in the collisional plasma of the solar corona and terrestrial ionosphere

Автор: Nekrasov A.K., Pilipenko V.A.

Журнал: Солнечно-земная физика @solnechno-zemnaya-fizika

Статья в выпуске: 4 т.6, 2020 года.

Бесплатный доступ

We have studied MHD waves (Alfvén and fast compressional modes) in a homogeneous collisional three-component low-β plasma. The three-component plasma consists of electrons, ions, and neutrals with arbitrary ratio between collision frequencies and wave time scales. We have derived a general dispersion equation and relationships for phase velocity and collisional damping rates for MHD modes for various limiting cases: from weak collisions to a strong collisional coupling, and for longitudinal and oblique propagation. In a weak collision limit, the MHD eigen-modes are reduced to ordinary low-damping Alfvén and fast magnetosonic waves. For a partially ionized plasma with a strong collisional coupling of neutrals and ions, velocities of magnetosonic and Alfvén waves are substantially reduced, as compared to the Alfvén velocity in the ideal MHD theory. At a very low frequency, when neutrals and ions are strongly coupled, a possibility arises of weakly damping MHD modes, called “decelerated” MHD modes. These modes can be observed in the solar corona/chromosphere and in the F layer of the terrestrial ionosphere.

Еще

Sun, terrestrial ionosphere, collisional plasma, mhd waves

Короткий адрес: https://sciup.org/142225921

IDR: 142225921   |   DOI: 10.12737/szf-64202003

Список литературы MHD waves in the collisional plasma of the solar corona and terrestrial ionosphere

  • Ballester J.L., Alexeev I.I., Collados M., et al. Partially ionized plasmas in astrophysics // Space Sci. Rev. 2018. V. 214, iss. 2. Article id. 58. DOI: 10.1007/s11214-018-0485-6
  • Balthasar H., Wiehr E., Schleicher H., Wohl H. Doppler oscillations in solar prominences simultaneously observed with two telescopes: Discovery of a 30 s oscillation // Astron. Astrophys. 1993. V. 277. P. 635-638.
  • Barkhatov N.A., Barkhatova O.M., Grigor'ev G.I. Spectral characteristics of magnetogravity waves generated by high-energy mass source in the equatorial region of the atmosphere. Part I // Geomagnetism and Aeronomy. 2014. V. 54, N 6. P. 819-831.
  • Barkhatova O.M., Barkhatov N.A., Grigoriev G.I. Discovery of magnetogravitational waves in the ionosphere using maximal observed frequencies at oblique radio sounding paths // Izv. Vuzov. Radiophysics. 2009. V. 52, N 10. P. 761-778.
  • Cally P.S. Alfv'en reflection and reverberation in the solar atmosphere // Solar Phys. 2012. V. 280. P. 33-50. DOI: 10.1007/s11207-012-0052-3
  • de Pontieu B., Haerendel G. Weakly damped Alfvén waves as drivers for spicules // Astron. Astrophys. 1998. V. 338. P. 729-736.
  • Foullon C., Verwichte E., Nakariakov V.M. Ultra-long-period oscillations in EUV filaments near to eruption: two-wavelength correlation and seismology // Astrophys. J. 2009. V. 700. P. 1658-1665.
  • DOI: 10.1088/0004-637X/700/2/1658
  • Karlov V.D., Kozlov S.I., Tkachev G.N. Large-scale disturbances in the ionosphere occurring during a passage of rocket with a running engine: A review // Cosmic Res. 1980. V. 18, N 2. P. 266-277.
  • McIntosh S.W., de Pontieu B., Carlsson M., et al. Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind // Nature. 2011. V. 7357. P. 475-477.
  • DOI: 10.1038/nature10235
  • McLellan A., Winterberg F. Magneto-gravity waves and the heating of the solar corona // Solar Phys. 1968. V. 4. P. 401-408.
  • DOI: 10.1007/BF00147905
  • Nakariakov V.M., Pilipenko V.A., Heilig B., et al. Magnetohydrodynamic oscillations in the solar corona and Earth's magnetosphere: Towards consolidated understanding // Space Sci. Rev. 2016. V. 200. P. 75-203.
  • Menk F.W., Waters C.L., Magnetoseismology. Ground-based remote sensing of Earth's magnetosphere. Wiley-VCH 2013. 251 p.
  • DOI: 10.1002/9783527652051.app2
  • Nekrasov A.K. Compressible streaming instabilities of warm multicomponent collisional magnetized astrophysical disks // Phys. Plasmas. 2008. V. 15. 032907. 10.1063/ 1.2894561.
  • DOI: 10.1063/1.2894561
  • Nekrasov A.K. Electromagnetic streaming instabilities of magnetized accretion disks with strong collisional coupling of species // Astrophys. J. 2009. V. 695, N 1. P. 46-58.
  • Nekrasov A.K., Shadmehri M. Multicomponent theory of buoyancy instabilities in astrophysical plasma objects: the case of magnetic field perpendicular to gravity // Astrophys. Space Sci. 2011. V. 333. P. 477-490.
  • DOI: 10.1007/s10509-011-0648-3
  • Pandey B.P., Vranjes J., Krishan V. Waves in the solar photosphere // Monthly Notices of the Royal Astronomical Society. 2008. V. 386, iss. 3. P. 1635-1643. 10.1111/ j.1365-2966.2008.13144.x.
  • DOI: 10.1111/j.1365-2966.2008.13144.x
  • Pilipenko V., Mazur N., Fedorov E., et al. Alfvén wave reflection in a curvilinear magnetic field and formation of Alfv'enic resonators on open field lines // J. Geophys. Res. 2005. V. 110. A10S05.
  • DOI: 10.1029/2004JA010755
  • Pokhotelov O.A., Parrot M., Pilipenko V.A., et al. Response of the ionosphere to natural and man-made acoustic sources // Ann. Geophys. 1995. V. 13, N 11. P. 1197-1210.
  • Rodriguez Gomez J.M., Palacios J., Vieira L., et al. The plasma β evolution through the solar corona during solar cycles 23 and 24 // Astrophys. J. 2019. V. 884, N 1.
  • DOI: 10.3847/1538-4357/ab40af
  • Song P., Gombosi T.I., Ridley A.J. Three-fluid Ohm's law // J. Geophys. Res. 2001. V. 106. P. 8149-8156.
  • Sorokin V.A., Fedorovich G.V. Physics of slow MHD waves in the ionospheric plasma. M.: Energoizdat, 1982. 135 p. (In Russian).
  • Tomaczyk S., McIntosh S.W., Keil S.L., et al. Alfv'en waves in the solar corona // Science. 2007. V. 317, N 5842. P. 1192-1196.
  • DOI: 10.1126/science.1143304
  • Tribble A.C., Pickett J.S., d'Angelo N., Murphy G.B. Plasma density, temperature and turbulence in the wake of the Shuttle orbiter // Planetary Space Sci. 1989. V. 37. P. 1001-1010.
  • DOI: 10.1016/0032-0633(89)90054-8
  • Vranjes J., Poedts S., Pandey B.P., de Pontieu D. Energy flux of Alfv'en waves in weakly ionized plasma // Astronomy Astrophys. 2008. V. 478. P. 553-558.
  • Yumoto K., Pilipenko V., Fedorov E., et al. The mechanisms of damping of geomagnetic pulsations // J. Geomag. Geoelectr. 1995. V. 47, N 2. P. 163-176.
  • Zaqarashvili T.V., Khodachenko M.L., Rucker H.O. Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach // Astron. Astrophys. 2011. V. 529. A82.
  • DOI: 10.1051/0004-6361/201016326
  • Zaqarashvili T.V., Carbonell M., Ballester J.I., Khodachenko M.L. Cut-off wavenumber of Alfv'en waves in partially ionized plasmas of the solar atmosphere // Astron. Astrophys. 2012. V. 544. A143.
  • DOI: 10.1051/0004-6361/201219763
Еще
Статья научная