Middle-Late Paleozoic conodont ecogeochemistry: an overview
Автор: A.V. Zhuravlev
Журнал: Вестник геонаук @vestnik-geo
Рубрика: Научные статьи
Статья в выпуске: 3 (315), 2021 года.
Бесплатный доступ
The ecogeochemistry is the application of geochemical features to study animal ecology. This approach is promising for using in reconstructions of ancient pelagic ecosystems. Among other Paleozoic fossils of pelagic animals, remains of conodonts are the most suitable for ecogeochemical investigations. The article reviews ecogeochemical applications of Middle to Late Paleozoic conodont elements. The following features are considered as the most informative: calcium isotopic composition and element ratios (e.g. Sr/Ca) of conodont apatite, and isotopic composition of carbon of conodont elements. These parameters allow us supposing ecological specialization of conodont species, and temporal and spatial dynamics of the ecogeochemistry of conodonts can be used to reconstruct transformations of ancient pelagic ecosystems.
Conodonts, pelagic ecosystems, ecogeochemistry, Paleozoic.
Короткий адрес: https://sciup.org/149129477
IDR: 149129477 | DOI: 10.19110/geov.2021.3.5
Список литературы Middle-Late Paleozoic conodont ecogeochemistry: an overview
- Anas M. U. M., Simpson G. L., Leavitt P. R., Cumming B. F., Laird K. R., Scott K. A., Das B., Wolfe J. D., Hesjedal B., Mushet G. R., Walker A., Meegahage B. J., Wissel B. Taxon- specific variation in 13C and 15N of subfossil invertebrate re- mains: Insights into historical trophodynamics in lake food-webs. Ecological Indicators, 2019, 102, pp. 834—847. DOI: 10.1016/j. ecolind.2019.03.026
- Balter V., Lécuyer C. Determination of Sr and Ba parti- tion coefficients between apatite and water from 5 °C to 60 °C: a potential new thermometer for aquatic paleoenvironments. Geochimica et Cosmochimica Acta, 2004, 68, pp. 423—432. DOI: 10.1016/S0016-7037(00)00453-8
- Balter V., Martin J. E., Tacail T., Suan G., Renaud S., Girard C. Calcium stable isotopes place Devonian conodonts as first level consumers. Geochemical Perspectives. Letters, 2019, 10, pp. 36—39. DOI: 10.7185/geochemlet.1912
- Barham M., Joachimski M. M., Murray J., Williams D. M. Diagenetic alteration of the structure and 18O signature of Palaeozoic fish and conodont apatite: Potential use for corrected isotope signatures in palaeoenvironmental interpretation. Chemical Geology, 2012, 298—299, pp. 11—19.
- Ebneth S., Diener A, Buhl D., and Veizer J. Strontium isotope systematics of conodonts: Middle Devonian, Eifel Mountains, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology. 1997, 132, pp. 79—96.
- Frank-Kamenetskaya O. V., Rozhdestvenskaya I. V., Rosseeva E. V., Zhuravlev A. V. Refinement of apatite atomic structure of albid tissue of Late Devon conodont. Crystallogr Rep., 2014, 59(1), pp. 41—47.
- Golding M. L. & McMillan R. The impacts of diagene- sis on the geochemical characteristics and Color Alteration Index of conodonts. Palaeobiodiversity and Palaeoenvironments, 2020. DOI: 10.1007/s12549-020-00447-y
- Grupe G., Hölzl S., Mayr C., Söllner F. () The Concept of Isotopic Landscapes: Modern Ecogeochemistry versus Bioarchaeology. In: Grupe G., Grigat A., McGlynn G. (eds) Across the Alps in Prehistory. Springer, 2017. https://doi. org/10.1007/978-3-319-41550-5_2
- Hempson T. N., Graham N. A. J., MacNeil M. A., Williamson D. H., Jones G. P., Almany G. R. Coral reef meso- predators switch prey, shortening food chains, in response to hab- itat degradation, Ecology and Evolution, 2017, 7, pp. 2626—2635. DOI: 10.1002/ece3.2805
- Katvala E. C. & Henderson C. M. Chemical element distributions within conodont elements and their functional im- plications. Paleobiology, 2012, 38, pp. 447—458. DOI:10.1666/11038.1
- Kolodny Y., Luz B., Sander M., and Clemens W. A. Dinosaur bones: Fossils or pseudomorph? The pitfalls of physiol- ogy reconstruction from apatite fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 126, pp. 161—171.
- Le Houedec S., Girard C., Balter V. Conodont Sr/Ca and 18O record seawater changes at the Frasnian–Famennian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 376, pp. 114—121.
- Luz, B., Kolodny Y. & Kovach J. Oxygen isotope varia- tions in phosphate of biogenic apatites, III. Conodonts. Earth and Planetary Science Letters, 1984, 69, pp. 255—262.
- McMahon, K. W., Hamady, L. L., & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 2013, 58(2), pp. 697—714. DOI:10.4319/lo.2013.58.2.0697
- Mizutani, H., Kabaya Y., & Wada E. Nitrogen and car- bon isotope compositions relate linearly in cormorant tissues and its diet. Isotopenpraxis, 1991, 27, pp. 166—168. DOI:10.1080/10256019108622500
- Nicholas C., Murray J., Goodhue R. & Ditchfield P. Nitrogen and carbon isotopes in conodonts: Evidence of trophic levels and nutrient flux in Palaeozoic oceans. The Palaeontological Association 48th Annual Meeting, 17th—20th December 2004, University of Lille, ABSTRACTS, pp. 126—127.
- Over D. J. & Grossman E. L. Carbon isotope analysis of conodont organic material — procedure and preliminary results. Geological Society of America, Abstracts with Programs, 1992, 24, A214.
- Schoeninger M. J. & DeNiro M. J. Carbon isotopes ra- tios of apatite from fossil bone cannot be used to reconstruct diets of animals. Nature, 1982, 297, pp. 577—578.
- Schoeninger, M. J. & DeNiro, M. J. Nitrogen and car- bon isotopic composition of bone collagen from marine and ter- restrial animals. Geochimica et Cosmochimica Acta, 1984, 48, pp. 625—639.
- Schoeninger M. J., DeNiro M., Tauber H. Stable nitro- gen isotope ratios of bone collagen reflects marine and terrestrial components of prehistoric human diet. Science, 1983, 220, pp. 1380–1383.
- Trotter J. A. & Eggins S. M. Chemical systematics of conodont apatite determined by laser ablation ICPMS. Chemical Geology, 2006, 233, pp. 196—216.
- Trueman C. N. Chemical taphonomy of biomineralized tissues. Palaeontology, 2013, 56(3), pp. 475—486. DOI: 10.1111/ pala.12041
- Wada E., Mizutani H. & Minagawa M. The use of stable isotopes for food web analysis. Critical Reviews in Food Science and Nutrition, 1991, 30(4), pp. 361—371 DOI: 10.1080/10408399109527547
- Ward C. L., McCann K.S. A mechanistic theory for aquatic food chain length. Nature Communications, 2017, 8, 2028. https://doi.org/10.1038/s41467-017-02157-0
- Wright J., Seymour R. S., and Shaw R. F. REE and Nd isotopes in conodont apatite: variations with geological age and depositional environment. Geol. Soc. Am. Spec. Pap., 196, 1984, pp. 325—340.
- Zhuravlev A. V. Trophic position of some Late Devonian-Carboniferous (Mississippian) conodonts revealed on carbon organic matter isotope signatures: a case study of the East European basin. Geodiversitas, 2020, 42 (24), pp. 443—453. DOI: 10.5252/geodiversitas2020v42a24
- Zhuravlev A. V., Plotitsyn A. N., Gruzdev D. A. Carbon Isotope Ratios in the Apatite-Protein Composites of Conodont Elements—Palaeobiological Proxy. Lecture Notes in Earth System Sciences. Frank-Kamenetskaya, O. V., Vlasov, D. Y., Panova, E. G., Lessovaia, S.N. (Eds.). Processes and Phenomena on the Boundary between Biogenic and Abiogenic Nature, 2020, Chapter 40, pp. 749—764 DOI: 10.1007/978-3-030-21614-6_40
- Zhuravlev, A. V. & Shevchuk, S.S. Strontium distribu- tion in Upper Devonian conodont elements: a palaeobiological proxy. Riv. It. Paleontol. Strat. 2017, 123(2), pp. 203—210.
- Zhuravlev A. V. & Smoleva I. V. Carbon isotope values in conodont elements from the latest Devonian — Early Carboniferous carbonate platform facies (Timan-Pechora Basin). Estonian Journal of Earth Sciences, 2018, 67(4), pp. 238—246. DOI: 10.3176/earth.2018.17