Микробиом и мозг: кишечная микробиота и нейроэндокринная система

Автор: Булгакова Светлана Викторовна, Романчук Наталья Петровна, Тренева Екатерина Вячеславовна

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Медицинские науки

Статья в выпуске: 6 т.8, 2022 года.

Бесплатный доступ

Микробная экосистема, населяющая желудочно-кишечный тракт всех млекопитающих, - кишечная микробиота - на протяжении многих тысячелетий находится в симбиотических отношениях со своими хозяевами. Благодаря современным технологиям выясняется множество функций организма, которые контролируются или модулируются кишечной микробиотой. Одной из систем, тесно взаимосвязанных с кишечной микробиотой, является нейроэндокринная система, контролирующая различные процессы в организме в ответ на стресс, а именно гипоталамо-гипофизарно-надпочечниковая ось (HPA). В настоящей статье описывается двунаправленная связь между кишечной микробиотой и осью HPA, обсуждаются лежащие в ее основе механизмы и связи с другими системами организма, такими как иммунная, вегетативная, центральная нервная системы, органы чувств, кишечный и гематоэнцефалический барьеры. Проведен анализ полезной роли пробиотиков и пребиотиков, вклад приема антибактериальных препаратов.

Еще

Микробиом, мозг, кишечная микробиота, гипоталамо-гипофизарно-надпочечниковая ось, пробиотик, пребиотик, нейроэндокринная система

Короткий адрес: https://sciup.org/14124469

IDR: 14124469   |   DOI: 10.33619/2414-2948/79/32

Список литературы Микробиом и мозг: кишечная микробиота и нейроэндокринная система

  • Toni R. The neuroendocrine system: organization and homeostatic role // Journal of endocrinological investigation. 2004. V. 27. №6 Suppl. P. 35-47. PMID: 15481802.
  • Prevot V. Plasticity of neuroendocrine systems // European Journal of Neuroscience. 2010. V. 32. №12. P. 1987-1988. https://doi.org/10.1111/j.1460-9568.2010.07533.x
  • Farzi A., Fröhlich E. E., Holzer P. Gut microbiota and the neuroendocrine system // Neurotherapeutics. 2018. V. 15. №1. P. 5-22. https://doi.org/10.1007/s13311-017-0600-5
  • Keller-Wood M. E., Dallman M. F. Corticosteroid inhibition of ACTH secretion // Endocrine reviews. 1984. V. 5. №1. P. 1-24. https://doi.org/10.1210/edrv-5-1-1
  • Булгакова С. В., Романчук Н. П., Волобуев А. Н. Новая личность и нейрокоммуникации: нейрогенетика и нейросети, психонейроиммуноэндокринология, 5P медицина и 5G технологии // Бюллетень науки и практики. 2021. Т. 7. №8. С. 202-240. https://doi.org/10.33619/2414-2948/69/26
  • O’Mahony S. M., Clarke G., Dinan T. G., Cryan J. F. Early-life adversity and brain development: Is the microbiome a missing piece of the puzzle? // Neuroscience. 2017. V. 342. P. 37-54. https://doi.org/10.1016/j.neuroscience.2015.09.068
  • Juruena M. F., Bocharova M., Agustini B., Young A. H. Atypical depression and nonatypical depression: Is HPA axis function a biomarker? A systematic review // Journal of affective disorders. 2018. V. 233. P. 45-67. https://doi.org/10.1016/j.jad.2017.09.052
  • Videlock E. J., Shih W., Adeyemo M., Mahurkar-Joshi S., Presson A. P., Polytarchou C., Chang L. The effect of sex and irritable bowel syndrome on HPA axis response and peripheral glucocorticoid receptor expression // Psychoneuroendocrinology. 2016. V. 69. P. 67-76. https://doi.org/10.1016/j.psyneuen.2016.03.016
  • Прохуровская, Е. В., Булгакова, С. В., Меликова, А. В., & Захарова, Н. О. Роль микробиоты кишечника в развитии болезни Паркинсона у лицпожилого и старческого возраста // Клиническая геронтология. 2021. V. 27. №7-8. P. 63-68. https://doi.org/10.26347/1607-2499202107-08063-068
  • Bradford K., Shih W., Videlock E. J., Presson A. P., Naliboff B. D., Mayer E. A., Chang L. Association between early adverse life events and irritable bowel syndrome // Clinical gastroenterology and hepatology. 2012. V. 10. №4. P. 385-390. e3. https://doi.org/10.1016/j.cgh.2011.12.018
  • Liu B., Liu J., Wang M., Zhang Y., Li L. From serotonin to neuroplasticity: evolvement of theories for major depressive disorder // Frontiers in cellular neuroscience. 2017. V. 11. P. 305. https://doi.org/10.3389/fncel.2017.00305
  • Heim C., Newport D. J., Heit S., Graham Y. P., Wilcox M., Bonsall R., Nemeroff C. B. Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood // Jama. 2000. V. 284. №5. P. 592-597. https://doi.org/10.1001/jama.284.5.592
  • De Punder K., Pruimboom L. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability // Frontiers in immunology. 2015. V. 6. P. 223. https://doi.org/10.3389/fimmu.2015.00223
  • Kelly J. R., Kennedy P. J., Cryan J. F., Dinan T. G., Clarke G., Hyland N. P. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders // Frontiers in cellular neuroscience. 2015. P. 392. https://doi.org/10.3389/fncel.2015.00392
  • Булгакова С. В., Захарова Н. О., Романчук П. И. Микробиота кишечника: новый регулятор сердечно-сосудистой функции // Бюллетень науки и практики. 2021. Т. 7. No1. С. 200-222. https://doi.org/10.33619/2414-2948/62/20
  • Slyepchenko A., Maes M., Jacka F. N., Köhler C. A., Barichello T., McIntyre R. S., Carvalho A. F. Gut microbiota, bacterial translocation, and interactions with diet: pathophysiological links between major depressive disorder and non-communicable medical comorbidities // Psychotherapy and psychosomatics. 2017. V. 86. №1. P. 31-46. https://doi.org/10.1159/000448957
  • Rajilić-Stojanović M., Jonkers D. M., Salonen A., Hanevik K., Raes J., Jalanka J., Penders J. Intestinal microbiota and diet in IBS: causes, consequences, or epiphenomena? // The American journal of gastroenterology. 2015. V. 110. №2. P. 278. https://doi.org/10.1038%2Fajg.2014.427
  • Collins S. M. The intestinal microbiota in the irritable bowel syndrome // International review of neurobiology. 2016. V. 131. P. 247-261. https://doi.org/10.1016/bs.irn.2016.08.003
  • Kelly J. R., Borre Y., O'Brien C., Patterson E., El Aidy S., Deane J., Dinan T. G. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat // Journal of psychiatric research. 2016. V. 82. P. 109-118. https://doi.org/10.1016/j.jpsychires.2016.07.019
  • Naseribafrouei A., Hestad K., Avershina E., Sekelja M., Linløkken A., Wilson R., Rudi K. Correlation between the human fecal microbiota and depression // Neurogastroenterology & Motility. 2014. V. 26. №8. P. 1155-1162. https://doi.org/10.1111/nmo.12378
  • Jiang H., Ling Z., Zhang Y., Mao H., Ma Z., Yin Y., Ruan B. Altered fecal microbiota composition in patients with major depressive disorder // Brain, behavior, and immunity. 2015. V. 48. P. 186-194. https://doi.org/10.1016/j.bbi.2015.03.016
  • Zheng P., Zeng B., Zhou C., Liu M., Fang Z., Xu X., Xie P. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism // Molecular psychiatry. 2016. V. 21. №6. P. 786-796. https://doi.org/10.1038/mp.2016.44
  • De Palma G., Lynch M. D., Lu J., Dang V. T., Deng Y., Jury J., Bercik P. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice // Science translational medicine. 2017. V. 9. №379. P. eaaf6397. https://doi.org/10.1126/scitranslmed.aaf6397
  • Doolin K., Farrell C., Tozzi L., Harkin A., Frodl T., O’Keane V. Diurnal hypothalamicpituitary- adrenal axis measures and inflammatory marker correlates in major depressive disorder // International journal of molecular sciences. 2017. V. 18. №10. P. 2226. https://doi.org/10.3390/ijms18102226
  • Holzer P., Reichmann F., Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut–brain axis // Neuropeptides. 2012. V. 46. №6. P. 261-274. https://doi.org/10.1016/j.npep.2012.08.005
  • Clarke, G., Stilling, R. M., Kennedy, P. J., Stanton, C., Cryan, J. F., & Dinan, T. G. Minireview: gut microbiota: the neglected endocrine organ // Molecular endocrinology. 2014. V. 28. №8. P. 1221-1238. https://doi.org/10.1210/me.2014-1108
  • El Aidy S., Dinan T. G., Cryan J. F. Gut microbiota: the conductor in the orchestra of immune–neuroendocrine communication // Clinical therapeutics. 2015. V. 37. №5. P. 954-967. https://doi.org/10.1016/j.clinthera.2015.03.002
  • Sherwin E., Sandhu K. V., Dinan T. G., Cryan J. F. May the force be with you: the light and dark sides of the microbiota–gut–brain axis in neuropsychiatry // CNS drugs. 2016. V. 30. №11. P. 1019-1041. https://doi.org/10.1007/s40263-016-0370-3
  • Meaney M. J., Aitken D. H., Bhatnagar S., Sapolsky R. M. Postnatal handling attenuates certain neuroendocrine, anatomical, and cognitive dysfunctions associated with aging in female rats // Neurobiology of aging. 1991. V. 12. №1. P. 31-38. https://doi.org/10.1016/0197-4580(91)90036-J
  • Singh-Taylor A., Molet J., Jiang S., Korosi A., Bolton J. L., Noam Y., Baram T. Z. NRSF-dependent epigenetic mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting resilience // Molecular psychiatry. 2018. V. 23. №3. P. 648-657. https://doi.org/10.1038/mp.2016.240
  • Van Bodegom M., Homberg J. R., Henckens M. J. A. G. Modulation of the hypothalamicpituitary- adrenal axis by early life stress exposure // Frontiers in cellular neuroscience. 2017. V. 11. P. 87. https://doi.org/10.3389/fncel.2017.00087
  • Levitt N. S., Lindsay R. S., Holmes M. C., Seckl J. R. Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat // Neuroendocrinology. 1996. V. 64. №6. P. 412-418. https://doi.org/10.1159/000127146
  • Sadler T. R., Nguyen P. T., Yang J., Givrad T. K., Mayer E. A., Maarek J. M. I., Holschneider D. P. Antenatal maternal stress alters functional brain responses in adult offspring during conditioned fear // Brain research. 2011. V. 1385. P. 163-174. https://doi.org/10.1016/j.brainres.2011.01.104
  • Son G. H., Geum D., Chung S., Kim E. J., Jo J. H., Kim C. M., Kim K. Maternal stress produces learning deficits associated with impairment of NMDA receptor-mediated synaptic plasticity // Journal of Neuroscience. 2006. V. 26. №12. P. 3309-3318. https://doi.org/10.1523/JNEUROSCI.3850-05.2006
  • Sowa J., Bobula B., Glombik K., Slusarczyk J., Basta-Kaim A., Hess G. Prenatal stress enhances excitatory synaptic transmission and impairs long-term potentiation in the frontal cortex of adult offspring rats // PLoS One. 2015. V. 10. №3. P. e0119407. https://doi.org/10.1371/journal.pone.0119407
  • Herman J. P., McKlveen J. M., Ghosal S., Kopp B., Wulsin A., Makinson R., Myers B. Regulation of the hypothalamic-pituitary-adrenocortical stress response // Comprehensive physiology. 2016. V. 6. №2. P. 603. https://doi.org/10.1002%2Fcphy.c150015
  • Holzer P., Wultsch T., Edelsbrunner M., Mitrovic M., Shahbazian A., Painsipp E., Pabst M. A. Increase in gastric acid–induced afferent input to the brainstem in mice with gastritis // Neuroscience. 2007. V. 145. №3. P. 1108-1119. https://doi.org/10.1016/j.neuroscience.2006.12.025
  • Dantzer R. O'Connor JC, Freund GG, Johnson RW, Kelley KW // From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008. V. 9. P. 46-56.
  • Miller M. A., Kandala N. B., Kivimaki M., Kumari M., Brunner E. J., Lowe G. D., Cappuccio F. P. Gender differences in the cross-sectional relationships between sleep duration and markers of inflammation: Whitehall II study // Sleep. 2009. V. 32. №7. P. 857-864. https://doi.org/10.1093/sleep/32.7.857
  • Shirtcliff E. A., Coe C. L., Pollak S. D. Early childhood stress is associated with elevated antibody levels to herpes simplex virus type 1 // Proceedings of the National Academy of Sciences. 2009. V. 106. №8. P. 2963-2967. https://doi.org/10.1073/pnas.0806660106
  • Weaver I. C., Cervoni N., Champagne F. A., D'Alessio A. C., Sharma S., Seckl J. R., Meaney M. J. Epigenetic programming by maternal behavior // Nature neuroscience. 2004. V. 7. №8. P. 847-854. https://doi.org/10.1038/nn1276
  • Klengel T., Mehta D., Anacker C., Rex-Haffner M., Pruessner J. C., Pariante C. M., Binder E. B. Allele-specific FKBP5 DNA demethylation: A molecular mediator of gene-childhood trauma interactions // Nature Neuroscience. 2012.
  • Bailey M. T., Coe C. L. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys // Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology. 1999. V. 35. №2. P. 146-155. https://doi.org/10.1002/(SICI)1098-2302(199909)35:2-146::AID-DEV7-3.0.CO;2-G
  • Lyte M., Ernst S. Catecholamine induced growth of gram-negative bacteria // Life sciences. 1992. V. 50. №3. P. 203-212. https://doi.org/10.1016/0024-3205(92)90273-R
  • Serrats J., Schiltz J. C., García-Bueno B., van Rooijen N., Reyes T. M., Sawchenko P. E. Dual roles for perivascular macrophages in immune-to-brain signaling // Neuron. 2010. V. 65. №1. P. 94-106. https://doi.org/10.1016/j.neuron.2009.11.032
  • Arentsen T., Qian Y., Gkotzis S., Femenia T., Wang T., Udekwu K., Diaz Heijtz R. The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior // Molecular psychiatry. 2017. V. 22. №2. P. 257-266. https://doi.org/10.1038/mp.2016.182
  • Clarke T. B., Davis K. M., Lysenko E. S., Zhou A. Y., Yu Y., Weiser J. N. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity // Nature medicine. 2010. V. 16. №2. С. 228-231. https://doi.org/10.1038/nm.2087
  • Farzi A., Reichmann F., Meinitzer, A., Mayerhofer, R., Jain, P., Hassan, A. M., Holzer P. Synergistic effects of NOD1 or NOD2 and TLR4 activation on mouse sickness behavior in relation to immune and brain activity markers // Brain, behavior, and immunity. 2015. V. 44. P. 106-120. https://doi.org/10.1016/j.bbi.2014.08.011
  • Mayerhofer R., Fröhlich E. E., Reichmann F., Farzi A., Kogelnik N., Fröhlich E., Holzer P. Diverse action of lipoteichoic acid and lipopolysaccharide on neuroinflammation, blood-brain barrier disruption, and anxiety in mice // Brain, behavior, and immunity. 2017. V. 60. P. 174-187. https://doi.org/10.1016/j.bbi.2016.10.011
  • Shanks N., Larocque S., Meaney M. J. Neonatal endotoxin exposure alters the development of the hypothalamic-pituitary-adrenal axis: early illness and later responsivity to stress // Journal of Neuroscience. 1995. V. 15. №1. P. 376-384. https://doi.org/10.1523/JNEUROSCI.15-01-00376.1995
  • Mouihate, A., Galic, M. A., Ellis, S. L., Spencer, S. J., Tsutsui, S., & Pittman, Q. J. Early life activation of toll-like receptor 4 reprograms neural anti-inflammatory pathways // Journal of Neuroscience. 2010. V. 30. №23. P. 7975-7983. https://doi.org/10.1523/JNEUROSCI.6078-09.2010
  • Ong L. K., Fuller E. A., Sominsky L., Hodgson D. M., Dunkley P. R., Dickson P. W. Early life peripheral lipopolysaccharide challenge reprograms catecholaminergic neurons // Scientific reports. 2017. V. 7. №1. P. 1-6. https://doi.org/10.1038/srep40475
  • Chang P. V., Hao L., Offermanns S., Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition // Proceedings of the National Academy of Sciences. 2014. V. 111. №6. P. 2247-2252. https://doi.org/10.1073/pnas.1322269111
  • Usami, M., Kishimoto, K., Ohata, A., Miyoshi, M., Aoyama, M., Fueda, Y., & Kotani, J. Butyrate and trichostatin A attenuate nuclear factor κB activation and tumor necrosis factor α secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells // Nutrition research. 2008. V. 28. №5. P. 321-328. https://doi.org/10.1016/j.nutres.2008.02.012
  • Furusawa Y., Obata Y., Fukuda S., Endo T. A., Nakato G., Takahashi D., Ohno H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells // Nature. 2013. V. 504. №7480. P. 446-450. https://doi.org/10.1038/nature12721
  • Rooks M. G., Garrett W. S. Gut microbiota, metabolites and host immunity // Nature reviews immunology. 2016. V. 16. №6. P. 341-352. https://doi.org/10.1038/nri.2016.42
  • Erny D., de Angelis A. L. H., Jaitin D., Wieghofer P., Staszewski O., David E., Prinz M. Host microbiota constantly control maturation and function of microglia in the CNS // Nature neuroscience. 2015. V. 18. №7. P. 965-977. https://doi.org/10.1038/nn.4030
  • Castillo-Ruiz A., Mosley M., George A. J., Mussaji L. F., Fullerton E. F., Ruszkowski E. M., Forger N. G. The microbiota influences cell death and microglial colonization in the perinatal mouse brain // Brain, behavior, and immunity. 2018. V. 67. P. 218-229. https://doi.org/10.1016/j.bbi.2017.08.027
  • Bilimoria P. M., Stevens B. Microglia function during brain development: new insights from animal models // Brain research. 2015. V. 1617. P. 7-17. https://doi.org/10.1016/j.brainres.2014.11.032
  • Schroeder, F. A., Lin, C. L., Crusio, W. E., & Akbarian, S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse // Biological psychiatry. 2007. V. 62. №1. P. 55-64. https://doi.org/10.1016/j.biopsych.2006.06.036
  • Han A., Sung Y. B., Chung S. Y., Kwon M. S. Possible additional antidepressant-like mechanism of sodium butyrate: targeting the hippocampus // Neuropharmacology. 2014. V. 81. P. 292-302. https://doi.org/10.1016/j.neuropharm.2014.02.017
  • De Silva A., Bloom S. R. Gut hormones and appetite control: a focus on PYY and GLP-1 as therapeutic targets in obesity // Gut and liver. 2012. V. 6. №1. P. 10. https://doi.org/10.5009%2Fgnl.2012.6.1.10
  • Brooks L., Viardot A., Tsakmaki A., Stolarczyk E., Howard J. K., Cani P. D., Bewick G. A. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety // Molecular metabolism. 2017. V. 6. №1. P. 48-60. https://doi.org/10.1016/j.molmet.2016.10.011
  • Breton J., Tennoune N., Lucas N., Francois M., Legrand R., Jacquemot J., Fetissov S. O. Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth // Cell metabolism. 2016. V. 23. №2. P. 324-334. https://doi.org/10.1016/j.cmet.2015.10.017
  • Tennoune N., Chan P., Breton J., Legrand R., Chabane Y. N., Akkermann K., Fetissov S. O. Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders // Translational psychiatry. 2014. V. 4. №10. P. e458-e458. https://doi.org/10.1038/tp.2014.98
  • Duca F. A., Swartz T. D., Sakar Y., Covasa M. Increased oral detection, but decreased intestinal signaling for fats in mice lacking gut microbiota // PLoS one. 2012. V. 7. №6. P. e39748. https://doi.org/10.1371/journal.pone.0039748
  • Schéle E., Grahnemo L., Anesten F., Hallén A., Bäckhed F., Jansson J. O. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system // Endocrinology. 2013. V. 154. №10. P. 3643-3651. https://doi.org/10.1210/en.2012-2151
  • Holzer P., Farzi A. Neuropeptides and the microbiota-gut-brain axis // Microbial endocrinology: the microbiota-gut-brain axis in health and disease. 2014. P. 195-219. https://doi.org/10.1007/978-1-4939-0897-4_9
  • Dhakal R., Bajpai V. K., Baek K. H. Production of GABA (γ-aminobutyric acid) by microorganisms: a review // Brazilian Journal of Microbiology. 2012. V. 43. №4. P. 1230-1241.
  • Asano, Y., Hiramoto, T., Nishino, R., Aiba, Y., Kimura, T., Yoshihara, K., ... & Sudo, N. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice // American Journal of Physiology-Gastrointestinal and Liver Physiology. 2012. V. 303. №11. P. G1288-G1295. https://doi.org/10.1152/ajpgi.00341.2012
  • Mazzoli R., Pessione E. The neuro-endocrinological role of microbial glutamate and GABA signaling // Frontiers in microbiology. 2016. V. 7. P. 1934. https://doi.org/10.3389/fmicb.2016.01934
  • Moya-Perez A., Perez-Villalba A., Benitez-Paez A., Campillo I., Sanz Y. Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice // Brain, behavior, and immunity. 2017. V. 65. P. 43-56. https://doi.org/10.1016/j.bbi.2017.05.011
  • Agusti A., Moya-Perez A., Campillo I., Montserrat-De La Paz S., Cerrudo V., Perez-Villalba A., Sanz Y.Bifidobacterium pseudocatenulatum CECT 7765 ameliorates neuroendocrine alterations associated with an exaggerated stress response and anhedonia in obese mice // Molecular neurobiology. 2018. V. 55. №6. P. 5337-5352. https://doi.org/10.1007/s12035-017-0768-z
  • Desbonnet L., Garrett L., Clarke G., Kiely B., Cryan J. F., Dinan T. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression // Neuroscience. 2010. V. 170. №4. P. 1179-1188. https://doi.org/10.1016/j.neuroscience.2010.08.005
  • Savignac H. M., Kiely B., Dinan T. G., Cryan J. F. B ifidobacteria exert strain‐specific effects on stress‐related behavior and physiology in BALB/c mice // Neurogastroenterology & Motility. 2014. V. 26. №11. P. 1615-1627. https://doi.org/10.1111/nmo.12427
  • Barouei J., Moussavi M., Hodgson D. M. Effect of maternal probiotic intervention on HPA axis, immunity and gut microbiota in a rat model of irritable bowel syndrome. 2012. https://doi.org/10.1371/journal.pone.0046051
  • Bravo J. A., Forsythe P., Chew M. V., Escaravage E., Savignac H. M., Dinan T. G., Cryan J. F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve // Proceedings of the National Academy of Sciences. 2011. V. 108. №38. P. 16050-16055. https://doi.org/10.1073/pnas.1102999108
  • Bharwani A., Mian M. F., Surette M. G., Bienenstock J., Forsythe P. Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress // BMC medicine. 2017. V. 15. №1. P. 1-14. https://doi.org/10.1186/s12916-016-0771-7
  • Kelly J. R., Allen A. P., Temko A., Hutch W., Kennedy P. J., Farid N., Dinan T. G. Lost in translation? The potential psychobiotic Lactobacillus rhamnosus (JB-1) fails to modulate stress or cognitive performance in healthy male subjects // Brain, behavior, and immunity. 2017. V. 61. P. 50-59. https://doi.org/10.1016/j.bbi.2016.11.018
  • Ait-Belgnaoui A., Durand H., Cartier C., Chaumaz G., Eutamene H., Ferrier L., Theodorou V. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats // Psychoneuroendocrinology. 2012. V. 37. №11. P. 1885-1895. https://doi.org/10.1016/j.psyneuen.2012.03.024
  • Ait‐Belgnaoui A., Colom A., Braniste V., Ramalho L., Marrot A., Cartier C., Tompkins T. Probiotic gut effect prevents the chronic psychological stress‐induced brain activity abnormality in mice // Neurogastroenterology & Motility. 2014. V. 26. №4. P. 510-520. https://doi.org/10.1111/nmo.12295
  • Gareau M. G., Jury J., MacQueen G., Sherman P. M., Perdue M. H. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation // Gut. 2007. V. 56. №11. P. 1522-1528. http://dx.doi.org/10.1136/gut.2006.117176
  • Vanhaecke T., Aubert P., Grohard P. A., Durand T., Hulin P., Paul‐Gilloteaux P., Neunlist M. L. fermentum CECT 5716 prevents stress‐induced intestinal barrier dysfunction in newborn rats // Neurogastroenterology & Motility. 2017. V. 29. №8. P. e13069. https://doi.org/10.1111/nmo.13069
  • Abildgaard A., Elfving B., Hokland M., Wegener G., Lund S. Probiotic treatment reduces depressive-like behaviour in rats independently of diet // Psychoneuroendocrinology. 2017. V. 79. P. 40-48. https://doi.org/10.1016/j.psyneuen.2017.02.014
  • Rothhammer V., Mascanfroni I. D., Bunse L., Takenaka M. C., Kenison J. E., Mayo L., Quintana F. J. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor // Nature medicine. 2016. V. 22. №6. P. 586-597. https://doi.org/10.1038/nm.4106
  • Andersson H., Tullberg C., Ahrné S., Hamberg K., Lazou Ahrén I., Molin G., Håkansson Å. Oral administration of Lactobacillus plantarum 299v reduces cortisol levels in human saliva during examination induced stress: a randomized, double-blind controlled trial // International Journal of Microbiology. 2016. V. 2016. https://doi.org/10.1155/2016/8469018
  • Messaoudi M., Lalonde R., Violle N., Javelot H., Desor D., Nejdi A., Cazaubiel J. M. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects // British Journal of Nutrition. 2011. V. 105. №5. P. 755-764.
  • Allen, A. P., Hutch, W., Borre, Y. E., Kennedy, P. J., Temko, A., Boylan, G., ... & Clarke, G. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers // Translational psychiatry. 2016. V. 6. №11. P. e939-e939. https://doi.org/10.1038/tp.2016.191
  • Burokas A., Arboleya S., Moloney R. D., Peterson V. L., Murphy K., Clarke G., Cryan J. F. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice // Biological psychiatry. 2017. V. 82. №7. P. 472-487. https://doi.org/10.1016/j.biopsych.2016.12.031
  • Schmidt K., Cowen P. J., Harmer C. J., Tzortzis G., Errington S., Burnet P. W. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers // Psychopharmacology. 2015. V. 232. №10. P. 1793-1801. https://doi.org/10.1007/s00213-014-3810-0
  • Barrera-Bugueño C., Realini O., Escobar-Luna J., Sotomayor-Zárate R., Gotteland M., Julio-Pieper M., Bravo J. A. Anxiogenic effects of a Lactobacillus, inulin and the synbiotic on healthy juvenile rats // Neuroscience. 2017. V. 359. P. 18-29. https://doi.org/10.1016/j.neuroscience.2017.06.064
  • Lu B., Nagappan G., Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction // Neurotrophic factors. 2014. P. 223-250. https://doi.org/10.1007/978-3-642-45106-5_9
  • Sudo N., Chida Y., Aiba Y., Sonoda J., Oyama N., Yu X. N., Koga Y. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice // The Journal of physiology. 2004. V. 558. №1. P. 263-275. https://doi.org/10.1113/jphysiol.2004.063388
  • Duman R. S. Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections // Dialogues in clinical neuroscience. 2022. https://doi.org/10.31887/DCNS.2014.16.1/rduman
  • Cohen S. M., Tsien R. W., Goff D. C., Halassa M. M. The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia // Schizophrenia research. 2015. V. 167. №1-3. С. 98-107. https://doi.org/10.1016/j.schres.2014.12.026
  • Roceri M., Hendriks W. J. A. J., Racagni, G., Ellenbroek, B. A., & Riva, M. A. Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus // Molecular psychiatry. 2002. V. 7. №6. P. 609-616. https://doi.org/10.1038/sj.mp.4001036
  • Heijtz R. D., Wang S., Anuar F., Qian Y., Björkholm B., Samuelsson A., Pettersson S. Normal gut microbiota modulates brain development and behavior // Proceedings of the National Academy of Sciences. 2011. V. 108. №7. P. 3047-3052. https://doi.org/10.1073/pnas.1010529108
  • Neufeld K. M., Kang N., Bienenstock J., Foster J. A. Reduced anxiety‐like behavior and central neurochemical change in germ‐free mice // Neurogastroenterology & Motility. 2011. V. 23. №3. P. 255-e119. https://doi.org/10.1111/j.1365-2982.2010.01620.x
  • Clarke G., Grenham S., Scully P., Fitzgerald P., Moloney R. D., Shanahan F., Cryan J. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner // Molecular psychiatry. 2013. V. 18. №6. P. 666-673. https://doi.org/10.1038/mp.2012.77
  • De Palma G., Blennerhassett P., Lu J., Deng Y., Park, A. J., Green W., Bercik P. Microbiota and host determinants of behavioural phenotype in maternally separated mice // Nature communications. 2015. V. 6. №1. P. 1-13. https://doi.org/10.1038/ncomms8735
  • Nishino R., Mikami K., Takahashi H., Tomonaga S., Furuse M., Hiramoto T., Sudo N. Commensal microbiota modulate murine behaviors in a strictly contamination‐free environment confirmed by culture‐based methods // Neurogastroenterology & Motility. 2013. V. 25. №6. P. 521-e371. https://doi.org/10.1111/nmo.12110
  • Crumeyrolle-Arias M., Jaglin M., Bruneau A., Vancassel S., Cardona A., Daugé V., Rabot S. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats // Psychoneuroendocrinology. 2014. V. 42. P. 207-217. https://doi.org/10.1016/j.psyneuen.2014.01.014
  • Bercik P., Denou E., Collins J., Jackson W., Lu J., Jury J., Collins S. M. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice // Gastroenterology. 2011. V. 141. №2. P. 599-609. e3. https://doi.org/10.1053/j.gastro.2011.04.052
  • Phelps D., Brinkman N. E., Keely S. P., Anneken E. M., Catron T. R., Betancourt D., Tal T. Microbial colonization is required for normal neurobehavioral development in zebrafish // Scientific reports. 2017. V. 7. №1. P. 1-13. https://doi.org/10.1038/s41598-017-10517-5
  • Weiss S. M., Wadsworth G., Fletcher A., Dourish C. T. Utility of ethological analysis to overcome locomotor confounds in elevated maze models of anxiety // Neuroscience & Biobehavioral Reviews. 1998. V. 23. №2. P. 265-271. https://doi.org/10.1016/S0149-7634(98)00027-X
  • Strekalova T., Spanagel R., Dolgov O., Bartsch D. Stress-induced hyperlocomotion as a confounding factor in anxiety and depression models in mice // Behavioural pharmacology. 2005. V. 16. №3. P. 171-180.
  • Round J. L., Mazmanian S. K. The gut microbiota shapes intestinal immune responses during health and disease // Nature reviews immunology. 2009. V. 9. №5. P. 313-323. https://doi.org/10.1038/nri2515
  • Lee Y. K., Menezes J. S., Umesaki Y., Mazmanian S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis // Proceedings of the National Academy of Sciences. 2011. V. 108. №Supplement 1. P. 4615-4622. https://doi.org/10.1073/pnas.1000082107
  • Wu H. J., Ivanov I. I., Darce J., Hattori K., Shima T., Umesaki Y., Mathis D. Gutresiding segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells // Immunity. 2010. V. 32. №6. P. 815-827. https://doi.org/10.1016/j.immuni.2010.06.001
  • Olszak T., An D., Zeissig S., Vera M. P., Richter J., Franke A., Blumberg R. S. Microbial exposure during early life has persistent effects on natural killer T cell function // Science. 2012. V. 336. №6080. P. 489-493. https://doi.org/10.1126/science.1219328
  • Smith C. J., Emge J. R., Berzins K., Lung L., Khamishon R., Shah P., Gareau M. G. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice // American Journal of Physiology-Gastrointestinal and Liver Physiology. 2014. V. 307. №8. P. G793-G802. https://doi.org/10.1152/ajpgi.00238.2014
  • Braniste V., Al-Asmakh M., Kowal C., Anuar F., Abbaspour A., Tóth M., Pettersson S. The gut microbiota influences blood-brain barrier permeability in mice // Science translational medicine. 2014. V. 6. №263. https://doi.org/10.1126/scitranslmed.3009759
  • Matsumoto M., Kibe R., Ooga T., Aiba Y., Sawaki E., Koga Y., Benno Y. Cerebral lowmolecular metabolites influenced by intestinal microbiota: a pilot study // Frontiers in systems neuroscience. 2013. V. 7. P. 9. https://doi.org/10.3389/fnsys.2013.00009
  • Wikoff W. R., Anfora A. T., Liu J., Schultz P. G., Lesley S. A., Peters E. C., Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites // Proceedings of the national academy of sciences. 2009. V. 106. №10. P. 3698-3703. https://doi.org/10.1073/pnas.0812874106
  • Stilling R. M., Ryan F. J., Hoban A. E., Shanahan F., Clarke G., Claesson M. J., Cryan J. F. Microbes & neurodevelopment–Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala // Brain, behavior, and immunity. 2015. V. 50. P. 209-220. https://doi.org/10.1016/j.bbi.2015.07.009
  • Luczynski P., Whelan S. O., O'Sullivan C., Clarke G., Shanahan F., Dinan T. G., Cryan J. F. Adult microbiota‐deficient mice have distinct dendritic morphological changes: Differential effects in the amygdala and hippocampus // European Journal of Neuroscience. 2016. V. 44. №9. P. 2654-2666. https://doi.org/10.1111/ejn.13291
  • Hoban A. E., Stilling R. M., Moloney G. M., Moloney R. D., Shanahan F., Dinan T. G., Clarke G. Microbial regulation of microRNA expression in the amygdala and prefrontal cortex // Microbiome. 2017. V. 5. №1. P. 1-11. https://doi.org/10.1186/s40168-017-0321-3
  • Nakata K., Sugi Y., Narabayashi H., Kobayakawa T., Nakanishi Y., Tsuda M., Takahashi K. Commensal microbiota-induced microRNA modulates intestinal epithelial permeability through the small GTPase ARF4 // Journal of Biological Chemistry. 2017. V. 292. №37. P. 15426-15433. https://doi.org/10.1074/jbc.M117.788596
  • Smith K., McCoy K. D., Macpherson A. J. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota // Seminars in immunology. Academic Press, 2007. V. 19. №2. P. 59-69. https://doi.org/10.1016/j.smim.2006.10.002
  • Chen H. F., Su H. M. Exposure to a maternal n-3 fatty acid-deficient diet during brain development provokes excessive hypothalamic–pituitary–adrenal axis responses to stress and behavioral indices of depression and anxiety in male rat offspring later in life // The Journal of nutritional biochemistry. 2013. V. 24. №1. P. 70-80. https://doi.org/10.1016/j.jnutbio.2012.02.006
  • Sartori S. B., Whittle N., Hetzenauer A., Singewald N. Magnesium deficiency induces anxiety and HPA axis dysregulation: modulation by therapeutic drug treatment // Neuropharmacology. 2012. V. 62. №1. P. 304-312. https://doi.org/10.1016/j.neuropharm.2011.07.027
  • Marissal-Arvy N., Hamiani R., Richard E., Moisan M. P., Pallet V. Vitamin A regulates hypothalamic-pituitary-adrenal axis status in LOU/C rats // J Endocrinol. 2013. V. 219. №1. P. 21-27. https://doi.org/10.1530/JOE-13-0062
  • Pusceddu M. M., El Aidy S., Crispie F., O’Sullivan O., Cotter, P., Stanton C., ... & Dinan, T. G. N-3 polyunsaturated fatty acids (PUFAs) reverse the impact of early-life stress on the gut microbiota // PloS one. 2015. V. 10. №10. P. e0139721. https://doi.org/10.1371/journal.pone.0139721
  • Widmaier E. P., Rosen K., Abbott B. Free fatty acids activate the hypothalamicpituitary-adrenocortical axis in rats // Endocrinology. 1992. V. 131. №5. P. 2313-2318. https://doi.org/10.1210/en.131.5.2313
  • Lanfranco F., Giordano R., Pellegrino M., Gianotti L., Ramunni J., Picu A., Arvat E. Free fatty acids exert an inhibitory effect on adrenocorticotropin and cortisol secretion in humans // The Journal of Clinical Endocrinology & Metabolism. 2004. V. 89. №3. P. 1385-1390. https://doi.org/10.1210/jc.2004-031132
  • Bailey, M. T., Dowd, S. E., Parry, N. M., Galley, J. D., Schauer, D. B., & Lyte, M. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium // Infection and immunity. 2010. V. 78. №4. P. 1509-1519. https://doi.org/10.1128/IAI.00862-09
  • Scheer S., Medina T. S., Murison A., Taves M. D., Antignano F., Chenery A., Zaph C. Early‐life antibiotic treatment enhances the pathogenicity of CD4+ T cells during intestinal inflammation // Journal of leukocyte biology. 2017. V. 101. №4. P. 893-900. https://doi.org/10.1189/jlb.3MA0716-334RR
  • Trobonjaca Z., Leithäuser F., Möller P., Bluethmann H., Koezuka Y., MacDonald H. R., Reimann J. MHC-II-independent CD4+ T cells induce colitis in immunodeficient RAG−/− hosts // The Journal of Immunology. 2001. V. 166. №6. P. 3804-3812. https://doi.org/10.4049/jimmunol.166.6.3804
  • Fröhlich E. E., Farzi, A., Mayerhofer R., Reichmann F., Jačan A., Wagner B., Holzer P. Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication // Brain, behavior, and immunity. 2016. V. 56. P. 140-155. https://doi.org/10.1016/j.bbi.2016.02.020
  • Farzi A., Reichmann F., Holzer P. The homeostatic role of neuropeptide Y in immune function and its impact on mood and behaviour // Acta Physiologica. 2015. V. 213. №3. P. 603-627. https://doi.org/10.1111/apha.12445
  • Wang T., Hu X., Liang S., Li W., Wu X., Wang L., Jin F. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats // Beneficial microbes. 2015. V. 6. №5. P. 707-717. https://doi.org/10.3920/BM2014.0177
  • O’mahony S. M., Felice V. D., Nally K., Savignac H. M., Claesson M. J., Scully P., Cryan J. F. Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats // Neuroscience. 2014. V. 277. P. 885-901. https://doi.org/10.1016/j.neuroscience.2014.07.054
  • Desbonnet L., Clarke G., Traplin A., O’Sullivan O., Crispie F., Moloney R. D., Cryan J. F. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour // Brain, behavior, and immunity. 2015. V. 48. P. 165-173. https://doi.org/10.1016/j.bbi.2015.04.004
  • Hoban A. E., Moloney R. D., Golubeva A. V., Neufeld K. M., O’Sullivan O., Patterson E., Cryan J. F. Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat // Neuroscience. 2016. V. 339. P. 463-477. https://doi.org/10.1016/j.neuroscience.2016.10.003
  • Gárate I., García-Bueno B., Madrigal J. L., Bravo L., Berrocoso E., Caso J. R., Leza J. C. Origin and consequences of brain Toll-like receptor 4 pathway stimulation in an experimental model of depression // Journal of neuroinflammation. 2011. V. 8. №1. P. 1-14. https://doi.org/10.1186/1742-2094-8-151
  • Aguilera M., Vergara P., Martinez V. Stress and antibiotics alter luminal and walladhered microbiota and enhance the local expression of visceral sensory‐related systems in mice // Neurogastroenterology & Motility. 2013. V. 25. №8. P. e515-e529. https://doi.org/10.1111/nmo.12154
  • Kim S., Covington A., Pamer E. G. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens // Immunological reviews. 2017. V. 279. №1. P. 90-105. https://doi.org/10.1111/imr.12563
  • Nau R., Sorgel F., Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections // Clinical microbiology reviews. 2010. V. 23. №4. P. 858-883. https://doi.org/10.1128/CMR.00007-10
  • Roy U., Panwar A., Pandit A., Das S. K., Joshi B. Clinical and neuroradiological spectrum of metronidazole induced encephalopathy: our experience and the review of literature // Journal of clinical and diagnostic research: JCDR. 2016. V. 10. №6. P. OE01. https://doi.org/10.7860%2FJCDR%2F2016%2F19032.8054
  • Goolsby T. A., Jakeman B., Gaynes R. P. Clinical relevance of metronidazole and peripheral neuropathy: a systematic review of the literature // International journal of antimicrobial agents. 2018. V. 51. №3. P. 319-325. https://doi.org/10.1016/j.ijantimicag.2017.08.033
  • Zmora N., Bashiardes S., Levy M., Elinav E. The role of the immune system in metabolic health and disease // Cell Metabolism. 2017. V. 25. №3. P. 506-521. https://doi.org/10.1016/j.cmet.2017.02.006
  • Романчук Н. П., Пятин В. Ф., Волобуев А. Н., Булгакова С. В., Тренева Е. В., Романов Д. В. Мозг, депрессия, эпигенетика: новые данные // Бюллетень науки и практики. 2020. Т. 6. №5. С. 163-183. https://doi.org/10.33619/2414-2948/54/21
  • Романчук Н. П. Здоровая микробиота и натуральное функциональное питание: гуморальный и клеточный иммунитет // Бюллетень науки и практики. 2020. Т. 6. №9. С. 127-166. https://doi.org/10.33619/2414-2948/58/14
  • Романчук Н. П. Мозг человека и природа: современные регуляторы когнитивного здоровья и долголетия // Бюллетень науки и практики. 2021. Т. 7. №6. С. 146-190. https://doi.org/10.33619/2414-2948/67/21
  • Романчук Н. П. Биоэлементология и нутрициология мозга // Бюллетень науки и практики. 2021. Т. 7. №9. С. 189-227. https://doi.org/10.33619/2414-2948/70/22
  • Caspani G., Kennedy S., Foster J. A., Swann J. Gut microbial metabolites in depression: understanding the biochemical mechanisms // Microbial Cell. 2019. V. 6. №10. P. 454. https://doi.org/10.15698%2Fmic2019.10.693
  • Chung Y. C. E., Chen H. C., Chou H. C. L., Chen I. M., Lee M. S., Chuang L. C., Kuo P. H. Exploration of microbiota targets for major depressive disorder and mood related traits // Journal of psychiatric research. 2019. V. 111. P. 74-82.
  • Романчук Н. П. Мозг Homo sapiens XXI века: нейрофизиологические, нейроэкономические и нейросоциальные механизмы принятия решений // Бюллетень науки и практики. 2021. Т. 7. №9. С. 228-270. https://doi.org/10.33619/2414-2948/70/23
  • Романчук Н. П., Булгакова С. В., Тренева Е. В., Волобуев А. Н., Кузнецов П. К. Нейрофизиология, нейроэндокринология и ядерная медицина: маршрутизация долголетия Homo sapiens // Бюллетень науки и практики. 2022. Т. 8. №4. С. 251-299. https://doi.org/10.33619/2414-2948/77/31
  • Романов Д. В., Романчук Н. П. Болезнь Альцгеймера и ядерная медицина: циркадианный стресс и нейровоспаление, нейрокоммуникации и нейрореабилитация // Бюллетень науки и практики. 2022. Т. 8. №5. С. 256-312. https://doi.org/10.33619/2414-2948/78/35
Еще
Статья обзорная