Микробные белки - элиситоры устойчивости растений к фитопатогенам и их потенциал для экологически ориентированной защиты сельскохозяйственных культур

Автор: Щербакова Л.А., Джавахия В.Г., Duan Y., Zhang J.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 5 т.58, 2023 года.

Бесплатный доступ

Для борьбы с болезнями растений современное сельское хозяйство располагает значительным арсеналом пестицидов-ксенобиотиков, токсичных для микроорганизмов. Однако опасное воздействие таких пестицидов или продуктов их разложения на окружающую среду и здоровье человека требует поиска новых, безвредных и экологически безопасных средств борьбы с болезнями. В связи с этим внимание исследователей привлекает феномен естественной устойчивости растений, в том числе их активный иммунитет и те природные вещества, которые могут индуцировать его механизмы (J.D. Jones с соавт., 2006; M. Albert, 2013; L. Wiesel с соавт., 2014; E.J. Andersen с соавт., 2018; D.F. Klessig с соавт., 2018). Источниками таких веществ, в том числе белков и пептидов, могут служить фитопатогенные и непатогенные микроорганизмы. При их взаимодействии с растениями микробные белки играют роль элиситоров неспецифической устойчивости, распознаваемых как консервативные микробные паттерны (МАМРs или PAMPs), которые индуцируют первую линию активной обороны растений (базовую устойчивость, или PTI) (C. Zipfel, 2009; M.A. Newman, 2013; J. Guo с соавт., 2022). Другие микробные белки - эффекторы, участвующие в развитии болезни, в случае узнавания их растениями-хозяевами также могут активировать защитные ответы как элиситоры расоспецифической устойчивости (B.P. Thomma с соавт., 2011; W. Zhang с соавт., 2022; B.C. Remick с соавт., 2023). Восприятие микробных белковых элиситоров растительными рецепторами вызывает быстрые ответные реакции и может приводить к развитию длительной системной устойчивости растений (T. Boller, G. Felix, 2009; J. B. Joshi с соавт., 2022; S. Wang с соавт., 2023). Изучение свойств и механизмов действия микробных белков представляет собой кластер исследований, результаты которых становятся базой для развития одного из наиболее экологичных направлений в защите растений, способного привести к разработке новых эффективных средств биоконтроля для устойчивого сельского хозяйства. За несколько последних десятилетий у непатогенных и фитопатогенных грибов, оомицетов, бактерий и вирусов, в том числе поражающих сельскохозяйственные культуры, идентифицирован ряд белков-элиситоров, которые относятся к MAMP/PAMP-типу, а также эффекторов, индуцирующих специфический иммунитет (ETI). В представленном обзоре суммирована и проанализирована информация о наиболее важных достижениях в области идентификации и исследования элиситорных белков, которые продуцируют различные бактерии, грибы, оомицеты и вирусы. В тех случаях, когда это известно, кратко описаны особенности структуры элиситоров и механизмы их действия, а именно те защитные ответы растений, которые индуцируются соответствующими элиситорами (D. Qutob с соавт., 2003; M. Tarallo с соавт., 2022; Q. Xu с соавт., 2022). Показано многообразие видов микроорганизмов, которые способны продуцировать элиситорные белки, запускающие механизмы как специфической, так и неспецифической устойчивости. Как примеры элиситоров наиболее подробно рассмотрены флагеллин, харпины, фактор элонгации Tu, белки холодового шока, эффекторы Cladosporium fulvum , элиситоры фитопатогенных и непатогенных фузариевых грибов из других микромицетов, а также недавно открытые МАМРs/PAMPs и ETI-индуцирующие белки. В обзор включена информация об элиситорах оомицетов, микробных ферментах, обладающих свойствами элиситоров, гликопротеинах и пептидогликанах, а также эффекторных белках фитовирусов (Y. Jin с соавт., 2021; L. Cai с соавт., 2023). Кроме того, в отдельном разделе на примере коммерческих препаратов, созданных на основе бактериальных и грибных белковых элиситоров, в том числе в России и Китае, которые доказали свою защитную эффективность в полевых условиях, показана перспективность практического применения микробных элиситорных белков (V.G. Dzhavakhiya с соавт., 2003; W.P. Liu с соавт., 2007; J. Mao с соавт., 2010; Q. Dewen с соавт., 2017).

Еще

Биогенные элиситоры, микробные белки и пептиды, микробные паттерны, эффекторы, рti, защитные ответы растений, экологически безопасные средства биоконтроля

Короткий адрес: https://sciup.org/142239852

IDR: 142239852   |   DOI: 10.15389/agrobiology.2023.5.789rus

Список литературы Микробные белки - элиситоры устойчивости растений к фитопатогенам и их потенциал для экологически ориентированной защиты сельскохозяйственных культур

  • Nelson R., Wiesner-Hanks T., Wisser R., Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nat. Rev. Genet., 2018, 19(1): 21-33 (doi: 10.1038/nrg.2017.82).
  • Food and Agriculture Organization. New standards to curb the global spread of plant pests and diseases. Режим доступа: https://www.fao.org/news/story/en/item/1187738/icode/. Дата обращения: 28.05.2023.
  • Hawkins N.J., Bass C., Dixon A., Neve P. The evolutionary origins of pesticide resistance. Biol. Rev., 2019, 94(1): 135-155 (doi: 10.1111/brv.12440).
  • Fisher M.C., Hawkins N.J., Sanglard D., Gurr S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science, 2018, 360(6390): 739-742 (doi: 10.1126/science.aap7999).
  • Stuthman D.D., Leonard K.J., Miller-Garvin J. Breeding crops for durable resistance to disease. Advances in Agronomy, 2007, 95: 319-367 (doi: 10.1016/s0065-2113(07)95004-x).
  • Conrath U., Beckers G. J., Flors V., Garcia-Agustin P., Jakab G., Mauch F., Newman M.-A., Pieterse C.M.J., Poinssot B., Pozo M.J., Pugin A., Schaffrath U., Ton J., Wendehenne D., Zimmerli L., Mauch-Mani B. Priming: getting ready for battle. MPMI, 2006, 19(10): 1062-1071 (doi: 10.1094/MPMI-19-1062).
  • Wiesel L., Newton A.C., Elliott I., Booty D., Gilroy E.M., Birch P.R.J., Hein I. Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Front. Plant Sci., 2014, 21(5): 655 (doi: 10.3389/fpls.2014.00655).
  • Klessig D.F., Choi H.W., D’Maris D.A. Systemic acquired resistance and salicylic acid: past, present, and future. MPMI, 2018, 31(9): 871-888 (doi: 10.1094/MPMI-03-18-0067-CR).
  • Conrath U. Molecular aspects of defence priming. Trends in Plant Science, 2011, 16(10): 524-531 (doi: 10.1016/j.tplants.2011.06.004).
  • Pastor V., Luna E., Mauch-Mani B., Ton J., Flors V. Primed plants do not forget. Environmental and Experimental Botany, 2013, 94: 46-56 (doi: 10.1016/j.envexpbot.2012.02.013).
  • Vlot A.C., Pabst E., Riedlmeier M. Systemic signalling in plant defence. In: eLS. John Wiley & Sons Ltd, Chichester, 2017.
  • Andersen E.J., Ali S., Byamukama E., Yen Y., Nepal M.P. Disease resistance mechanisms in plants. Genes, 2018, 9(7): 339 (doi: 10.3390/genes9070339).
  • Kamle M., Borah R., Bora H., Jaiswal A.K., Singh R.K., Kumar P. Systemic acquired resistance (SAR) and induced systemic resistance (ISR): role and mechanism of action against phytopathogens. In: Fungal biotechnology and bioengineering /A.L. Hesham, R. Upadhyay, G. Sharma, C. Manoharachary, V. Gupta (eds.). Springer, Cham, 2020.
  • Jones J.D., Dangl J.L. The plant immune system. Nature, 2006, 444(7117): 323-329 (doi: 10.1038/nature05286).
  • Newman M.A., Sundelin T., Nielsen J.T., Erbs G. MAMP (microbe- associated molecular pattern) triggered immunity in plants. Front. Plant Sci., 2013, 4: 139 (doi: 10.3389/fpls.2013.00139).
  • Abdul Malik N.A., Kumar I.S., Nadarajah K. Elicitor and receptor molecules: orchestrators of plant defense and immunity. Int. J. Mol. Sci., 2020, 21(3): 963 (doi: 10.3390/ijms21030963).
  • Medina-Puche L., Rufián J.S. Role of receptor-like kinases in plant-pathogen interaction. In: Plant receptor-like kinases /S.K. Upadhyay, Shumayla (еds.). Academic Press, Cambridge, 2023. (doi: 10.1016/B978-0-323-90594-7.00014-4).
  • Meng X., Zhang S. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology, 2013, 51: 245-266 (doi: 10.1146/annurev-phyto-082712-102314).
  • Kadota Y., Shirasu K., Zipfel C. Regulation of the NADPH oxidase RBOHD during plant immunity. Plant and Cell Physiology, 2015, 56(8): 1472-1480 (doi: 10.1093/pcp/pcv063).
  • Yuan P., Tanaka K., Du L., Poovaiah B.W. Calcium signaling in plant autoimmunity: a guard model for AtSR1/CAMTA3-mediated immune response. Molecular Plant, 2018, 11(5): 637-639 (doi: 10.1016/j.molp.2018.02.014).
  • Zhang Y., Li X. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 2019, 50: 29-36 (doi: 10.1016/j.pbi.2019.02.004).
  • Zhong C.-L., Zhang C., Liu J.-Z. Hetero-trimeric G protein signaling in plant immunity. Journal of Experimental Botan, 2018, 70(4): 1109-1118 (doi: 10.1093/jxb/ery426).
  • Dodds P.N., Rathjen J.P. Plant immunity: towards an integrated view of plant—pathogen interactions. Nat. Rev. Genet., 2010, 11(8): 539-548 (doi: 10.1038/nrg2812).
  • Pruitt R.N., Gust A.A., Nürnberger T. Plant immunity unified. Nature Plants, 2021, 7(4): 382-383 (doi: 10.1038/s41477-021-00903-3).
  • Remick B.C., Gaidt M.M., Vance R.E. Effector-triggered immunity. Annual Review of Immunology, 2023, 41: 453-481 (doi: 10.1146/annurev-immunol-101721-031732).
  • Mejía-Teniente L., Torres-Pacheco I., González-Chavira M.M., Ocampo-Velazquez R.V., Herrera-Ruiz G., Chapa-Oliver A.M., Guevara-González R.G. Use of elicitors as an approach for sustainable agriculture. African Journal of Biotechnology, 2010, 9(54): 9155-9162.
  • Naito K., Taguchi F., Suzuki T., Inagaki Y., Toyoda K., Shiraishi T., Ichinose Y. Amino acid sequence of bacterial microbe-associated molecular pattern flg22 is required for virulence. МPMI, 2008, 21(9): 1165-1174 (doi: 10.1094/MPMI-21-9-1165).
  • Zipfel C. Early molecular events in PAMP-triggered immunity. Current Opinion in Plant Biology, 2009, 12(4): 414-420 (doi: 10.1016/j.pbi.2009.06.003).
  • Wang B., Yang X., Zeng H., Liu H., Zhou T., Tan B., Yuan J., Guo L., Qiu D. The purification and characterization of a novel hypersensitive-like response-inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco. Appl. Microbiol. Biotechnol., 2012, 93(1): 191-201 (doi: 10.1007/s00253-011-3405-1).
  • Xu Y., Chen H., Zhou X., Cai X. Induction of hypersensitive response and nonhost resistance by a Cladosporium fulvum elicitor CfHNNI1 is dose-dependent and negatively regulated by salicylic acid. Journal of Integrative Agriculture, 2012, 11(5): 1665-1674 (doi: 10.1016/S2095-3119(12)60169-5).
  • Mishra A.K., Sharma K., Misra R.S. Elicitor recognition, signal transduction and induced resistance in plants. Journal of Plant Interactions, 2012, 7(2): 95-120 (doi: 10.1080/17429145.2011.597517).
  • Erbs G., Newman M.A. The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity. Molecular Plant Pathology, 2012, 13(1): 95-104 (doi: 10.1111/j.1364-3703.2011.00730.x).
  • Albert M. Peptides as triggers of plant defence. Journal of Experimental Botany, 2013, 64(17): 5269-5279 (doi: 10.1093/jxb/ert275).
  • Boller T., He S.Y. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science, 2009, 324(5928): 742-744 (doi: 10.1126/science.1171647).
  • Тютерев С.Л. Экологически безопасные индукторы устойчивости растений к болезням и физиологическим стрессам. Вестник защиты растений, 2015, 1(83): 3-13.
  • Хавкин Э.Е. Молекулярный диалог растений с патогенами: эволюция, механизмы и практическое использование. Физиология растений, 2021, 68(2): 115-131 (doi: 10.31857/S001533032102007X).
  • Попова Э.В., Домнина Н.С., Сокорнова C.В., Коваленко Н.М., Тютерев С.Л. Инновационные гибридные иммуномодуляторы растений на основе хитозана и биоактивных антиоксидантов и прооксидантов. Сельскохозяйственная биология, 2021, 26(1): 158-170 (doi: 10.15389/agrobiology.2021.1.158rus).
  • Славохотова А.А., Шеленков А.А., Андреев Я.А., Одинцова Т.И. Гевеиноподобные антимикробные пептиды растений. Успехи биологической химии, 2017, 57: 209-244.
  • Щербакова Л.А., Джавахия В.Г. Микробные белки и пептиды, представляющие интерес для разработки экологически безопасных технологий защиты растений от фитопатогенов. Известия Самарского научного центра Российской академии наук, 2013, 15(3-5): 1705-1709.
  • Ayliffe M., Sørensen C. Plant non-host resistance: paradigms and new environments. Current Opinion in Plant Biology, 2019, 50: 104-113 (doi: 10.1016/j.pbi.2019.03.011).
  • Guo J., Cheng Y. Advances in fungal elicitor-triggered plant immunity. Int. J. Mol. Sci., 2022, 23(19): 12003 (doi: 10.3390/ijms231912003).
  • Gómez-Gómez L., Boller T. Flagellin perception: a paradigm for innate immunity. Trends in Plant Science, 2002 7(6): 251-256 (doi: 10.1016/s1360-1385(02)02261-6).
  • Lu Y., Swartz J.R. Functional properties of flagellin as a stimulator of innate immunity. Sci. Rep., 2016, 6: 18379 (doi: 10.1038/srep18379).
  • Gómez-Gómez L., Boller T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell, 2000, 5(6): 1003-1011 (doi: 10.1016/s1097-2765(00)80265-8).
  • Boller T., Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 2009, 60: 379-406 (doi: 10.1146/annurev.arplant.57.032905.105346).
  • Shiu S.-H., Karlowski W.M., Pan R., Tzeng Y.-H., Mayer K.F., Li W.-H. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. The Plant Cell, 2004, 16(5): 1220-1234 (doi: 10.1105/tpc.020834).
  • Jelenska J., Davern S.M., Standaert R.F., Mirzadeh S., Greenberg J.T. Flagellin peptide flg22 gains access to long-distance trafficking in Arabidopsis via its receptor, FLS2. Journal of Experimental Botany, 2017, 68(7): 1769-1783 (doi: 10.1093/jxb/erx060).
  • Fliegmann J., Felix G. Immunity: flagellin seen from all sides. Nature Plants, 2016, 2(9): 16136 (doi: 10.1038/nplants.2016.136).
  • Hind S.R., Strickler S.R., Boyle P.C., Dunham D.M., Bao Z., O’Doherty I.M., Baccile J.A., Hoki J.S., Viox E.G., Clarke C.R. Vinatzer B.A., Schroeder F.C., Martin G.B. Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nature Plants, 2016, 2(9): 1-8 (doi: 10.1038/nplants.2016.128).
  • Chinchilla D., Zipfel C., Robatzek S., Kemmerling B., Nürnberger T., Jones J.D., Felix G., Boller T. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 2007, 448(7152): 497-500 (doi: 10.1038/nature05999).
  • Macho A.P., Zipfel C. Plant PRRs and the activation of innate immune signaling. Molecular Cell, 2014, 54(2): 263-272 (doi: 10.1016/j.molcel.2014.03.028).
  • Wei Y., Caceres-Moreno C., Jimenez-Gongora T., Wang K., Sang Y., Lozano-Duran R., Macho A.P. The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family. Plant Biotechnol. J., 2018, 16(7): 1349-1362 (doi: 10.1111/pbi.12874).
  • Cai R., Lewis J., Yan S., Liu H., Clarke C.R., Campanile F., Almeida N.F., Studholme D.J., Lindeberg M., Schneider D., Zaccardelli M., Setubal J.C., Morales-Lizcano N.P., Bernal A., Coaker G., Baker C., Bender C.L., Leman S., Vinatzer B.A. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLOS Pathog., 2011, 7(8): e1002130 (doi: 10.1371/journal.ppat.1002130).
  • Moroz N., Tanaka K. FlgII-28 is a major flagellin-derived defense elicitor in potato. MPMI, 2020, 33(2): 247-255 (doi: 10.1094/MPMI-06-19-0164-R).
  • Haney C.H., Ausubel F.M., Urbach J.M. Innate immunity in plants and animals: differences and similarities. The Biochemist, 2014, 36(5): 40-45 (doi: 10.1042/BIO03605040).
  • Kunze G., Zipfel C., Robatzek S., Niehaus K., Boller T., Felix G. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. The Plant Cell, 2004, 16(12): 3496-3507 (doi: 10.1105/tpc.104.026765).
  • Xu G., Greene G.H., Yoo H., Liu L., Marqués J., Motley J., Dong X. Global translational reprogramming is a fundamental layer of immune regulation in plants. Nature, 2017, 545(7655): 487-490 (doi: 10.1038/nature22371).
  • Wei Z.-M., Laby R.J., Zumoff C.H., Bauer D.W., He S.Y., Collmer A., Beer S.V. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science, 1992, 257(5066): 85-88 (doi: 10.1126/science.1621099).
  • He S.Y., Huang H.C., Collmer A. Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell, 1993, 73(7): 1255-1266 (doi: 10.1016/0092-8674(93)90354-s).
  • Kim J.G., Jeon E., Oh J., Moon J.S., Hwang I. Mutational analysis of Xanthomonas harpin HpaG identifies a key functional region that elicits the hypersensitive response in nonhost plants. Journal of Bacteriology, 2004, 186(18): 6239-6247 (doi: 10.1128/JB.186.18.6239-6247.2004).
  • Tarafdar P.K., Vedantam L.V., Kondreddy A., Podile A.R., Swamy M.J. Biophysical investigations on the aggregation and thermal unfolding of harpinPss and identification of leucine-zipper-like motifs in harpins. Biochimica et Biophysica Acta (BBA) — Proteins and Proteomics, 2009, 1794(11): 1684-1692 (doi: 10.1016/j.bbapap.2009.07.023).
  • Choi M.-S., Kim W., Lee C., Oh C.-S. Harpins, multi-functional proteins secreted by gram-negative plant-pathogenic bacteria. MPMI, 2013, 26(10): 1115-1122 (doi: 10.1094/MPMI-02-13-0050-CR).
  • Dong H.-P., Yu H., Bao Z., Guo X., Peng J., Yao Z., Chen G., Qu S., Dong H. The ABI2- dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta, 2005, 221(3): 313-327 (doi: 10.1007/s00425-004-1444-x).
  • Yang Y., Chen T., Dai X., Yang D., Wu Y., Chen H., Zheng Y., Zhi Q., Wan X., Tan X. Comparative transcriptome analysis revealed molecular mechanisms of peanut leaves responding to Ralstonia solanacearum and its type III secretion system mutant. Front. Microbiol., 2022, 13: 998817 (doi: 10.3389/fmicb.2022.99881).
  • Xie L., Liu Y., Wang H., Liu W., Di R., Miao W., Zheng F. Characterization of harpin Xoo induced hypersensitive responses in non host plant, tobacco. J. Plant Biochem. Biotechnol., 2017, 26(1): 73-79 (doi: 10.1007/s13562-016-0363-9).
  • Zou L.-F., Wang X.-P., Xiang Y., Zhang B., Li Y.-R., Xiao Y.-L., Wang J.-S., Walmsley A.R., Chen G.-Y. Elucidation of the hrp clusters of Xanthomonas oryzae pv. oryzicola that control the hypersensitive response in nonhost tobacco and pathogenicity in susceptible host rice. Applied and Environmental Microbiology, 2006, 72(9): 6212-6224 (doi: 10.1128/AEM.00511-06).
  • Cho H.-J., Park Y.-J., Noh T.-H., Kim Y.-T., Kim J.-G., Song E.-S., Lee D.-H., Lee B.-M. Molecular analysis of the hrp gene cluster in Xanthomonas oryzae pathovar oryzae KACC10859. Microbial Pathogenesis, 2008, 44(6): 473-483 (doi: 10.1016/j.micpath.2007.12.002).
  • Liu Y., Zhou X., Liu W., Xiong X., Lv C., Zhou X., Miao W. Functional regions of HpaXm as elicitors with specific heat tolerance induce the hypersensitive response or plant growth promotion in nonhost plants. PLoS ONE, 2018, 13(1): e0188788 (doi: 10.1371/journal.pone.0188788).
  • Miao W.-G., Song C.-F., Wang Y., Wang J.-S. HpaXm from Xanthomonas citri subsp. malvacearum is a novel harpin with two heptads for hypersensitive response. J. Microbiol. Biotechnol., 2010, 20(1): 54-62.
  • Haapalainen M., Engelhardt S., Kuefner I., Li C.M., Nuernberger T., Lee J., Romantschuk M., Taira S. Functional mapping of harpin HrpZ of Pseudomonas syringae reveals the sites responsible for protein oligomerization, lipid interactions and plant defence induction. Molecular Plant Pathology, 2011, 12(2): 151-166 (doi: 10.1111/j.1364-3703.2010.00655.x).
  • Wu H., Wang S., Qiao J., Liu J., Zhan J., Gao X. Expression of HpaGXooc protein in Bacillus subtilis and its biological functions. J. Microbiol. Biotechnol., 2009, 19(2): 194-203 (doi: 10.4014/jmb.0802.154).
  • Chen G.-Y., Zhang B., Wu X.-M., Zhao M.-Q., Wei S., Wu X.B. Cloning and characterization of an harpin encoding gene from Xanthomonas axonopodis pv. glycines required for hypersensitive response on nonhost plant tobacco. Wei Sheng Wu Xue Bao, 2005, 45(4): 496-499.
  • Palmieri A.C.B., Amaral A.M., Homem R.A., Machado M.A. Differential expression of pathogenicity- and virulence-related genes of Xanthomonas axonopodis pv. citri under copper stress. Genet. Mol. Biol., 2010, 33(2): 348-353 (doi: 10.1590/S1415-47572010005000030).
  • Wang X., Zhang L., Ji H., Mo X., Li P., Wang J., Dong H. Hpa1 is a type III translocator in Xanthomonas oryzae pv. oryzae. BMC Microbiol., 2018, 18(1): 105 (doi: 10.1186/s12866-018-1251-3).
  • Niu X.-N., Wei Z.-Q., Zou H.-F., Xie G.-G., Wu F., Li K.-J., Jiang W., Tang J.-L., He Y.-Q. Complete sequence and detailed analysis of the first indigenous plasmid from Xanthomonas oryzae pv. oryzicola. BMC Microbiol., 2015, 15(1): 233 (doi: 10.1186/s12866-015-0562-x).
  • Solé M., Scheibner F., Hoffmeister A.-K., Hartmann N., Hause G., Rother A., Jordan M., Lautier M., Arlat M., Büttner D. Xanthomonas campestris pv. vesicatoria secretes proteases and xylanases via the Xps type II secretion system and outer membrane vesicles. Journal of Bacteriology, 2015, 197(17): 2879-2893 (doi: 10.1128/JB.00322-15).
  • Fu M., Xu M., Zhou T., Wang D., Tian S., Han L., Dong H., Zhang C. Transgenic expression of a functional fragment of harpin protein Hpa1 in wheat induces the phloem-based defence against English grain aphid. Journal of Experimental Botany, 2014, 65(6): 1439-1453 (doi: 10.1093/jxb/ert488).
  • Kvitko B.H., Ramos A.R., Morello J.E., Oh H.-S., Collmer A. Identification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors. Journal of Bacteriology, 2007, 189(22): 8059-8072 (doi: 10.1128/JB.01146-07).
  • Tampakaki A.P., Panopoulos N.J. Elicitation of hypersensitive cell death by extracellularly targeted HrpZPph produced in planta. MPMI, 2000, 13(12): 1366-1374 (doi: 10.1094/MPMI.2000.13.12.1366).
  • Reboutier D., Frankart C., Briand J., Biligui B., Laroche S., Rona J.-P., Barny M.-A., Bouteau F. The HrpNea harpin from Erwinia amylovora triggers differential responses on the nonhost Arabidopsis thaliana cells and on the host apple cells. MPMI, 2007, 20(1): 94-100 (doi: 10.1094/MPMI-20-0094).
  • Li P., Zhang L., Mo X., Ji H., Bian H., Hu Y., Majid T., Long J., Pang H., Tao Y., Ma J., Dong H. Rice aquaporin PIP1;3 and harpin Hpa1 of bacterial blight pathogen cooperate in a type III effector translocation. Journal of Experimental Botany, 2019, 70(12): 3057-3073 (doi: 10.1093/jxb/erz130).
  • Grant S.R., Fisher E.J., Chang J.H., Mole B.M., Dangl J.L. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annual Review of Microbiology, 2006, 60: 425-449 (doi: 10.1146/annurev.micro.60.080805.142251).
  • Engelhardt S., Lee J., Gabler Y., Kemmerling B., Haapalainen M.-L., Li C.-M., Wei Z., Keller H., Joosten M., Taira S., Nurnberger T. Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZ1 in ion-conducting pore formation and activation of plant immunity. The Plant Journal, 2009, 57(4): 706-717 (doi: 10.1111/j.1365-313X.2008.03723.x).
  • Oh C.S., Beer S.V. AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis. Plant Physiology, 2007, 145(2): 426-436 (doi: 10.1104/pp.107.103432).
  • Chang X., Nick P. Defense signaling triggered by flg22 and harpin is integrated into a different stilbene output in Vitis cells. PLoS ONE, 2012, 7(7): e40446 (doi: 10.1371/journal.pone.0040446).
  • Sang S., Li X., Gao R., You Z., Lü B., Liu P., Ma Q., Dong H. Apoplastic and cytoplasmic location of harpin protein Hpa1Xoo plays different roles in H2O2 generation and pathogen resistance in Arabidopsis. Plant Mol. Biol., 2012, 79(4-5): 375-391 (doi: 10.1007/s11103-012-9918-x).
  • Pavli O.I., Kelaidi G.I., Tampakaki A.P., Skaracis G.N. The hrpZ gene of Pseudomonas syringae pv. phaseolicola enhances resistance to rhizomania disease in transgenic Nicotiana benthamiana and sugar beet. PLoS ONE, 2011, 6(3): e17306 (doi: 10.1371/journal.pone.0017306).
  • Dong H.-P., Peng J., Bao Z., Meng X., Bonasera J.M., Chen G., Beer S.V., Dong H. Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiology, 2004, 136(3): 3628-3638 (doi: 10.1104/pp.104.048900).
  • Chen L., Zhang S.-J., Zhang S.-S., Qu S., Ren X., Long J., Yin Q., Qian J., Sun F., Zhang C. Wang L., Wu X., Wu T., Zhang Z., Cheng Z., Hayes M., Beer S.V., Dong H. A fragment of the Xanthomonas oryzae pv. oryzicola harpin HpaGXooc reduces disease and increases yield of rice in extensive grower plantings. Phytopathology, 2008, 98(7): 792-802 (doi: 10.1094/PHYTO-98-7-0792).
  • Wang D., Wang Y., Fu M., Mu S., Han B., Ji H., Cai H., Dong H., Zhang C. Transgenic expression of the functional fragment Hpa110-42 of the harpin protein Hpa1 imparts enhanced resistance to powdery mildew in wheat. Plant Disease, 2014, 98(4): 448-455 (doi: 10.1094/PDIS-07-13-0687-RE).
  • Sands L.B., Cheek T., Reynolds J., Ma Y., Berkowitz G.A. Effects of harpin and flg22 on growth enhancement and pathogen defense in Cannabis sativa seedlings. Plants, 2022, 11(9): 1178 (doi: 10.3390/plants11091178).
  • Chang X., Seo M., Takebayashi Y., Kamiya Y., Riemann M., Nick P. Jasmonates are induced by the PAMP flg22 but not the cell death-Inducing elicitor harpin in Vitis rupestris. Protoplasma, 2017, 254(1): 271-283 (doi: 10.1007/s00709-016-0941-7).
  • Joshi J.B., Senthamilselvi D., Maupin-Furlow J.A., Uthandi S. Microbial protein elicitors in plant defense. In: Microbial biocontrol: sustainable agriculture and phytopathogen management /A. Kumar (ed.). Springer, Cham, 2022 (doi: 10.1007/978-3-030-87512-1_10).
  • Dong H., Delaney T.P., Bauer D.W., Beer S.V. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J., 1999, 20(2): 207-215 (doi: 10.1046/j.1365-313x.1999.00595.x).
  • Сhoi M.S., Kim W., Lee C., Oh C.S. Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria. MPMI, 2013, 26(10): 1115-1122 (doi: 10.1094/MPMI-02-13-0050-CR).
  • Zhang N., Zhou S., Yang D., Fan Z. Revealing shared and distinct genes responding to JA and SA signaling in Arabidopsis by meta-analysis. Front. Plant Sci., 2020, 11: 908 (doi: 10.3389/fpls.2020.00908).
  • Скабкин М.А., Скабкина О.В., Овчинников Л.П. Mультифункциональные белки с доменом холодового шока в регуляции экспрессии генов. Успехи биологической химии, 2004, 44: 3-52.
  • Eshwar A.K., Guldimann C., Oevermann A., Tasara T. Cold-shock domain family proteins (Csps) are involved in regulation of virulence, cellular aggregation, and flagella-based motility in Listeria monocytogenes. Front. Cell. Infect. Microbiol., 2017, 7: 453 (doi: 10.3389/fcimb.2017.00453).
  • Felix G., Boller T. Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. Journal of Biological Chemistry, 2003, 278(8): 6201-6208 (doi: 10.1074/jbc.M209880200).
  • Wang L., Albert M., Einig E., Fürst U., Krust D., Felix G. The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein. Nature Plants, 2016, 2: 16185 (doi: 10.1038/nplants.2016.185).
  • Djavakhia V.G., Nikolaev O.N., Voinova T.M., Battchikova N.A., Korpela T., Khomutov R.M. DNA sequence of gene and amino acid sequence of protein from Bacillus thuringiensis, which induces nonspecific resistance of plants to viral and fungal diseases. Journal of Russian Phytopathological Society, 2000, 1: 75-81.
  • Shcherbakova L.A. Some natural proteinaceous and polyketide compounds in plant protection and their potential in green consumerization. In: Natural products in plant pest management /N.K. Dubey (ed.). CABI International, Boston, 2011 (doi: 10.1079/9781845936716.0109).
  • Кромина К.А., Джавахия В.Г. Экспрессия бактериального гена CspD в растениях табака приводит к повышению устойчивости к грибным и вирусным фитопатогенам. Молeкулярная генетика, микробиология и вирусология, 2006, 1: 31-34.
  • de Wit P.J., Laugé R., Honée G., Joosten M.H., Vossen P., Kooman-Gersmann M., Vogelsang R., Vervoort J.J. Molecular and biochemical basis of the interaction between tomato and its fungal pathogen Cladosporium fulvum. Antonie Van Leeuwenhoek, 1997, 71(1-2): 137-141 (doi: 10.1023/a:1000102509556).
  • Ökmen B., de Wit P.J.G.M. Cladosporium fulvum-tomato pathosystem: fungal infection strategy and plant responses. In: Molecular plant immunity /G. Sessa (ed.). John Wiley & Sons Ltd., West Sussex, 2013 (doi: 10.1002/9781118481431.ch10).
  • Wan J., Zhang X.-C., Neece D., Ramonell K.M., Clough S., Kim S.-Y., Stacey M.G., Stacey G. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell, 2008, 20(2), 471-481 (doi: 10.1105/tpc.107.056754).
  • Liebrand T.W., van den Berg G.C., Zhang Z., Smit P., Cordewener J.H., America A.H., Sklenar J., Jones A.M., Tameling W.I., Robatzek S., Thomma B.P., Joosten M.H. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc. Natl. Acad. Sci. USA, 2013, 110(24): 10010-10015 (doi: 10.1073/pnas.1220015110).
  • Wulff B.B., Chakrabarti A., Jones D.A. Recognitional specificity and evolution in the tomato–Cladosporium fulvum pathosystem. MPMI, 2009, 22(10): 1191-1202 (doi: 10.1094/MPMI-22-10-1191).
  • Sánchez-Vallet A., Saleem-Batcha R., Kombrink A., Hansen G., Valkenburg D.J., Thomma B.P., Mesters J.R. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. eLife, 2013, 2: e00790 (doi: 10.7554/eLife.00790).
  • Thomma B.P., Nürnberger T., Joosten M.H. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. The Plant Cell, 2011, 23(1): 4-15 (doi: 10.1105/tpc.110.082602).
  • Kombrink A., Sanchez-Vallet A., Thomma B.P. The role of chitin detection in plant-pathogen interactions. Microbes Infect., 2011, 13(14-15): 1168-1176 (doi: 10.1016/j.micinf.2011.07.010)
  • Rep M., van der Does H.C., Meijer M., van Wijk R., Houterman P.M., Dekker H.L., de Koster C.G., Cornelissen B.J.C. A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Molecular Microbiology, 2004, 53(5): 1373-1383 (doi: 10.1111/j.1365-2958.2004.04177.x).
  • Takken F., Rep M. The arms race between tomato and Fusarium oxysporum. Molecular Plant Pathology, 2010, 11(2): 309-314 (doi: 10.1111/j.1364-3703.2009.00605.x).
  • Shcherbakova L., Odintsova T., Stakheev A., Fravel D. Zavriev S. Identification of a novel small cysteine-rich protein in the fraction from the biocontrol Fusarium oxysporum strain CS-20 that mitigates Fusarium wilt symptoms and triggers defense responses in tomato. Front. Plant Sci., 2015, 6: 1207 (doi: 10.3389/fpls.2015.01207).
  • Shcherbakova L.A., Nazarova T.A., Mikityuk O.D., Fravel D.R. Fusarium sambucinum isolate FS-94 690 induces resistance against Fusarium wilt of tomato via activation and priming of a salicylic acid-dependent signaling system. Russ. J. Plant Physiology, 2011, 58: 808-818 (doi: 10.1134/S1021443711050207).
  • Shcherbakova L.A., Nazarova T.A., Mikityuk O.D, Istomina E.A., Odintsova T.I. An extract purified from the mycelium of a tomato wilt-controlling strain of Fusarium sambucinum is able to protect wheat against Fusarium and common root rots. Pathogens, 2018, 7(3): 61 (doi: 10.3390/pathogens7030061).
  • Keates S.E., Kostman T.A., Anderson J.D., Bailey B.A. Altered gene expression in three plant species in response to treatment with Nep1, a fungal protein that causes necrosis, Plant Physiology, 2003, 132(3): 1610-1622 (doi: 10.1104/pp.102.019836).
  • Oomea S., Raaymakersa T.M., Cabrala A., Samwela S., Böhm H., Albert I., Nürnberger T., van den Ackerveken G. Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proc. Natl. Acad. Sci. USA, 2014, 111(47): 16955-16960 (doi: 10.1073/pnas.1410031111).
  • van't Slot K. A., van den Burg H.A., Kloks C.P., Hilbers C.W., Knogge W., Papavoine C.H. Solution structure of the plant disease resistance-triggering protein NIP1 from the fungus Rhynchosporium secalis shows a novel beta-sheet fold. Journal of Biological Chemistry, 2003, 278(46): 45730-45736 (doi: 10.1074/jbc.M308304200).
  • Djonović S., Pozo M.J., Dangott L.J., Howell C.R., Kenerley C.M. Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. MPMI, 2006, 19(8): 838-853 (doi: 10.1094/MPMI-19-0838).
  • Seidl V., Marchetti M., Schandl R., Allmaier G., Kubicek C.P. Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. The FEBS Journal, 2006, 273(18): 4346-4359 (doi: 10.1111/j.1742-4658.2006.05435.x).
  • Wang Y., Song J., Wu Y., Odeph M., Liu Z., Howlett B.J., Wang S., Yang P., Yao L., Zhao L., Yang Q. Eplt4 proteinaceous elicitor produced in Pichia pastoris has a protective effect against Cercosporidium sofinum infections of soybean leaves. Appl. Biochem. Biotechnol., 2013, 169(3): 722-737 (doi: 10.1007/s12010-012-0015-z).
  • Ruocco M., Lanzuise S., Lombardi N., Woo S.L., Vinale F., Marra R., Varlese R., Manganiello G., Pascale A., Scala V., Turrà D., Scala F., Lorito M. Multiple roles and effects of a novel Trichoderma hydrophobin. MPMI, 2015, 28(2): 167-179 (doi: 10.1094/MPMI-07-14-0194-R).
  • Zhang W., Fraiture M., Kolb D., Löffelhardt B., Desaki Y., Boutrot F.F., Tör M., Zipfel C., Gust A.A., Brunner F. Arabidopsis receptor-like protein and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. The Plant Cell, 2013, 25(10): 4227-4241 (doi: 10.1105/tpc.113.117010).
  • Zhang Y., Yang X., Liu Q., Qiu D., Zhang Y., Zeng H., Yuan J., Mao J. Purification of novel protein elicitor from Botrytis cinerea that induce disease resistance and drought tolerance in plants. Microbiological Research, 2010, 165(2): 142-151 (doi: 10.1016/j.micres.2009.03.004).
  • Peng D.-H., Qiu D.-W., Ruan L.-F., Zhou C.-F., Sun M. Protein elicitor PemG1 from Magnaporthe grisea induces systemic acquired resistance (SAR) in plants. MPMI, 2011, 24(10): 1239-1246 (doi: 10.1094/MPMI-01-11-0003).
  • Chen M., Zeng H., Qiu D., Guo L., Yang X., Shi H., Zhou T., Zhao J. Purification and characterization of a novel hypersensitive response-inducing elicitor from Magnaporthe oryzae that triggers defense response in rice. PLoS ONE, 2012, 7(5): e37654 (doi: 10.1371/journal.pone.0037654).
  • Kulye M., Liu H., Zhang Y., Zeng H., Yang X., Qiu D. Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defence-related genes and systemic acquired resistance in tobacco. Plant Cell Environ., 2012, 35(12): 2104-2120 (doi: 10.1111/j.1365-3040.2012.02539.x).
  • Liu W.P., Zeng H.M., Liu Y.F., Yuan J.J., Qiu D.W. Expression of Alternaria tenuissima PeaT2 gene in Pichia pastoris and its function. Wei Sheng Wu Xue Bao, 2007, 47(4): 593-597.
  • Mao J., Liu Q., Yang X., Long C., Zhao M., Zeng H., Liu H., Yuan J., Qiu D. Purification and expression of a protein elicitor from Alternaria tenuissima and elicitor-mediated defence responses in tobacco. Annals of Applied Biology, 2010, 156(3): 411-420 (doi: 10.1111/j.1744-7348.2010.00398.x).
  • Zhang W., Li H., Wang L., Xie S., Zhang Y., Kang R., Zhang M., Zhang P., Li Y., Hu Y., Wang M., Chen L., Yuan H., Ding S., Li H. A novel effector, CsSp1, from Bipolaris sorokiniana, is essential for colonization in wheat and is also involved in triggering host immunity. Molecular Plant Pathology, 2022, 23(2): 218-236 (doi: 10.1111/mpp.13155).
  • Wang J., Liu S., Ren P., Jia F., Kang F., Wang R., Xue R., Yan X., Huang L. A novel protein elicitor (PeSy1) from Saccharothrix yanglingensis induces plant resistance and interacts with a receptor-like cytoplasmic kinase in Nicotiana benthamiana. Molecular Plant Pathology, 2023, 24(5): 436-451 (doi: 10.1111/mpp.13312).
  • Tarallo M., McDougal R.L., Chen Z., Wang Y., Bradshaw R.E., Mesarich C.H. Characterization of two conserved cell death elicitor families from the Dothideomycete fungal pathogens Dothistroma septosporum and Fulvia fulva (syn. Cladosporium fulvum). Front. Microbiol., 2022, 13: 964851 (doi: 10.3389/fmicb.2022.964851).
  • Xu Q., Hu S., Jin M., Xu Y., Jiang Q., Ma J., Zhang Y., Qi P., Chen G., Jiang Y., Zheng Y., Wei Y. The N-terminus of a Fusarium graminearum-secreted protein enhances broad-spectrum disease resistance in plants. Molecular Plant Pathology, 2022, 23(12): 1751-1764 (doi: 10.1111/mpp.13262).
  • Wang S., Yang S., Dai K., Zheng W., Zhang X., Yang B., Ye W., Zheng X., Wang Y.The effector Fg62 contributes to Fusarium graminearum virulence and induces plant cell death. Phytopathol. Res., 2023, 5: 12 (doi: 10.1186/s42483-023-00167-z).
  • Janků M., Činčalová L., Luhová L., Lochman J., Petřivalský M. Biological effects of oomycetes elicitins. Plant Prot. Sci., 2020, 56(1): 1-8 (doi: 10.17221/21/2019-PPS).
  • Derevnina L., Dagdas Y.F., de la Concepcion J.C., Bialas A., Kellner R., Petre B., Domazakis E., Du J., Wu C. H., Lin X., Aguilera-Galvez C., Cruz-Mireles N., Vleeshouwers V.G., Kamoun S. Nine things to know about elicitins. New Phytol., 2016, 212 (4): 888-895 (doi: 10.1111/nph.14137).
  • Noman A., Aqeel M., Irshad M.K., Qari S.H., Hashem M., Alamri S., AbdulMajeed A.M., Al-Sadi A.M. Elicitins as molecular weapons against pathogens: consolidated biotechnological strategy for enhancing plant growth. Critical Reviews in Biotechnology, 2020, 40(6): 821-832 (doi: 10.1080/07388551.2020.1779174).
  • Qutob D., Huitema E., Gijzen M., Kamoun S. Variation in structure and activity among elicitins from Phytophthora sojae. Molecular Plant Pathology, 2003, 4(2): 119-124 (doi: 10.1046/j.1364-3703.2003.00158.x).
  • Starý T., Satková P., Piterková J., Mieslerová B., Luhová L., Mikulík J., Kašparovský T., Petřivalský M., Lochman J. The elicitin β-cryptogein’s activity in tomato is mediated by jasmonic acid and ethylene signalling pathways independently of elicitin-sterol interactions. Planta, 2018, 249: 739-749 (doi: 10.1007/s00425-018-3036-1).
  • Keller H., Bonnet P., Galiana E., Pruvot L., Friedrich L., Ryals J., Ricci P. Salicylic acid mediates elicitin-induced systemic acquired resistance, but not necrosis in tobacco. MPMI, 1996, 9: 696-703 (doi: 10.1094/MPMI-9-0696).
  • Kawamura Y., Hase S., Takenaka S., Kanayama Y., Yoshioka H., Kamoun S., Takahashi H. INF1 elicitin activates jasmonic acid- and ethylene-mediated signalling pathways and induces resistance to bacterial wilt disease in tomato. Journal of Phytopathology, 2009, 157: 287-297 (doi: 10.1111/j.1439-0434.2008.01489.x).
  • Brunner F., Rosahl S., Lee J., Rudd J.J., Geiler C., Kauppinen S., Rasmussen G., Scheel D., Nürnberger T. Pep-13 a plant defense inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J., 2002, 21(24): 6681-6688 (doi: 10.1093/emboj/cdf667).
  • Veit S., Worle J. M., Nurnberger T., Koch W., Seitz H.U. A novel protein elicitor (PaNie) from Pythium aphanidermatum induce duel defense responses in carrot and Arabidopsis. Plant Physiology, 2001, 127: 832-841.
  • Frías M., González M., González C., Brito N. A 25-residue peptide from Botrytis cinerea xylanase BcXyn11A elicits plant defenses. Front. Plant Sci., 2019, 10: 474 (doi: 10.3389/fpls.2019.00474).
  • Mishura A.A., Sharma K., Misra R.S. Purification and characterization of elicitor protein from Phytophthora colocasiae and basic resistance in Colocasia esculenta. Microbiological Research, 2009, 64: 688-693 (doi: 10.1016/j.micres.2008.09.001).
  • Bar M., Sharfman M., Avni A. LeEix1 functions as a decoy receptor to attenuate LeEix2 signaling. Plant Signaling & Behavior, 2011, 6(3): 455-457 (doi: 10.4161/psb.6.3.14714).
  • Tundo S., Moscetti I., Faoro F., Lafond M., Giardina T., Favaron F., Sella L., D’Ovidio R. Fusarium graminearum produces different xylanases causing host cell death that is prevented by the xylanase inhibitors XIP-I and TAXI-III in wheat. Plant Science, 2015, 240: 161-169 (doi: 10.1016/j.plantsci.2015.09.002).
  • Noda J, Brito N, González C. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol., 2010, 10: 38 (doi: 10.1186/1471-2229-10-38).
  • Ma Y., Han C., Chen J., Li H., He K., Liu A., Li D. Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity. Molecular Plant Pathology, 2015, 16(1): 14-26 (doi: 10.1111/mpp.12156).
  • Shumilina D., Krämer R., Klocke E., Dzhavakhiya V. MF3 (peptidyl-prolyl cis/trans isomerase of FKBP type from Pseudomonas fluorescens) — an elicitor of non-specific plant resistance against pathogens. Phytopathol. Pol., 2006, 41: 39-49.
  • Struwe W.B., Robinson C.V. Relating glycoprotein structural heterogeneity to function in sights from native mass spectrometry. Current Opinion in Structural Biology, 2019, 58: 241-248 (doi: 10.1016/j.sbi.2019.05.019).
  • Chen X.-L., Shi T., Yang J., Shi W., Gao X., Chen D., Xu X., Xu J.-R., Talbot N. J., Peng Y. L. N-glycosylation of effector proteins by an -1,3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity. Plant Cell, 2014, 26(3): 1360-1376 (doi: 10.1105/tpc.114.123588).
  • Takenaka S., Nakamura Y., Kono T., Sekiguchi H., Masunaka A., Takahashi H. Novel elicitin-like proteins isolated from the cell wall of the biocontrol agent Pythium oligandrum induce defence-related genes in sugar beet. Molecular Plant Pathology, 2006, 7(5): 325-339 (doi: 10.1111/j.1364-3703.2006.00340.x).
  • Gust A.A., Biswas R., Lenz H.D., Rauhut T., Ranf S., Kemmerling B., Götz F., Glawischnig E., Lee J., Felix G., Nürnberger T. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. Journal of Biological Chemistry, 2007, 282(44): 32338-32348 (doi: 10.1074/jbc.M704886200).
  • Jin Y., Zhao J.-H., Guo H.-S. Recent advances in understanding plant antiviral RNAi and viral suppressors of RNAi. Curr. Opin. Virol., 2021, 46: 65-72 (doi: 10.1016/j.coviro.2020.12.001).
  • Wang K.D., Empleo R., Nguyen T.T., Moffett P., Sacco M.A. Elicitation of hypersensitive responses in Nicotiana glutinosa by the suppressor of RNA silencing protein P0 from poleroviruses. Molecular Plant Pathology, 2015, 16(5): 435-448 (doi: 10.1111/mpp.12201).
  • Cai L., Dang M., Yang Y., Mei R., Li F., Tao X., Palukaitis P., Beckett R., Miller W.A., Gray S.M., Xu Y. Naturally occurring substitution of an amino acid in a plant virus gene-silencing suppressor enhances viral adaptation to increasing thermal stress. PLoS Pathog., 2023, 19(4): e1011301 (doi: 10.1371/journal.ppat.1011301).
  • Pumplin N., Voinnet O. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat. Rev. Microbiol., 2013, 11(11): 745-760 (doi: 10.1038/nrmicro3120).
  • Dewen Q., Yijie D., Yi Z., Shupeng L., Fachao S. Plant immunity inducer development and application. MPMI, 2017, 30(5): 355-360 (doi: 10.1094/MPMI-11-16-0231-CR).
  • Соколов Ю. А. Элиситоры и их примение. Известия Национальной академии наук Беларуси. Серия химических наук, 2015, 4: 109-121.
  • Dzhavakhia V., Filippov F., Skryabin K., Voinova T., Kouznetsova M., Shulga O., Shumilina D., Kromina K., Pridanniko M., Battchikova N., Korpela T. Proteins inducing multiple resistance of plants to phytopathogens and pests. Intern. Pat. Classification: C07K 14/21. Intern. applic. number: PCT/FI2004/000766. Intern. Filing date: 17 December 2004 (17.12.2004). Priority data: 20031880 22 December 2003. Intern. Public. number: WO 2005/061533 A1
  • Shen Y., Li J., Xiang J., Xiang J., Wang J., Yin K., Liu Q. Isolation and identification of a novel protein elicitor from a Bacillus subtilis strain BU412. AMB Expr., 2019, 9: 117 (doi: 10.1186/s13568-019-0822-5).
Еще
Статья обзорная