МИКРОКЛАПАНЫ В МИКРОФЛЮИДНЫХ УСТРОЙСТВАХ. ЧАСТЬ 1. АКТИВНЫЕ МИКРОКЛАПАНЫ (ОБЗОР)
Автор: А. Н. Зубик, Г. Е. Рудницкая, А. А. Евстрапов
Журнал: Научное приборостроение @nauchnoe-priborostroenie
Рубрика: Разработка приборов и систем
Статья в выпуске: 4, 2023 года.
Бесплатный доступ
Микроклапан является одним из важнейших функциональных элементов микрофлюидного устройства. Микроклапаны позволяют организовать движение потоков, их дозирование, регулирование расхода, смешивание, загрузку жидкости и ее изоляцию в реакционной камере, что широко используется в интегрированных микрофлюидных системах. Существует много типов микроклапанов, каждый из которых имеет разные характеристики и предназначен для решения определенных задач. Микроклапаны разработаны в виде активных или пассивных конструктивных элементов с механическими, немеханическими внутренними или внешними системами. В этой статье представлен обзор наиболее используемых конструкций микроклапанов в микрофлюидике, основанных на различных исполнительных механизмах.
Микрофлюидика, микроклапан, активный клапан, пассивный клапан
Короткий адрес: https://sciup.org/142238610
IDR: 142238610
Список литературы МИКРОКЛАПАНЫ В МИКРОФЛЮИДНЫХ УСТРОЙСТВАХ. ЧАСТЬ 1. АКТИВНЫЕ МИКРОКЛАПАНЫ (ОБЗОР)
- 1. Au A.K., Lai H., Utela B.R., Folch A. Microvalves and Micropumps for BioMEMS // Micromachines. 2011. Vol. 2. Р. 179–220. DOI: 10.3390/mi2020179
- 2. Woolf M.S., Dignan L.M., Lewis H.M., Tomley C.J., Nauman A.Q., Landers J.P. Optically-controlled closable microvalves for polymeric centrifugal microfluidic devices // Lab Chip. 2020. Vol. 20. Р. 1426–1440. DOI: 10.1039/C9LC01187K
- 3. Durasiewicz C.P., Güntner S.T., Maier P.K., Hölzl W., Schrag G. Piezoelectric normally open microvalve with multiple valve seat trenches for medical applications // Appl. Sci. 2021. Vol. 11, iss. 19. Id. 9252. DOI:10.3390/app11199252
- 4. Zhang C., Xing D., Li Y. Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends // Biotechnology Advances. 2007. Vol. 25, iss. 5. P. 483–514. DOI: 10.1016/j.biotechadv.2007.05.003
- 5. Qian J-Y., Hou C-W., Li X-J., Jin Z-J. Actuation mechanism of microvalves: a review // Micromachines. 2020. Vol. 11, no. 2. Id. 172. DOI: 10.3390/mi11020172
- 6. Oh K.W., Ahn C.H. A review of microvalves // J. Micromech. Microeng. 2006. Vol. 16, no. 5. Р. R13–R39. DOI: 10.1088/0960-1317/16/5/R01
- 7. Wu J., Fang H., Zhang J., Yan S. Modular microfluidics for life sciences // J Nanobiotechnol. 2023. Vol. 21. Art. 85. DOI: 10.1186/s12951-023-01846-x
- 8. Huang M., Zheng L., Zhang H., Xue S., Ni H. Application of microvalve based on computer control in biological chemical and medical // Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing - AIAM 2019. Dublin, Ireland. Art. 18. P. 1–6. DOI: 10.1145/3358331.3358349
- 9. Bae B., Han J., Masel R.I., Shannon M.A. A bidirectional electrostatic microvalve with microsecond switching performance // Journal of Microelectromechanical Systems. 2007. Vol. 16, no. 6. P. 1461–1471. DOI: 10.1109/jmems.2007.907782
- 10. Anjewierden D., Liddiard G.A., Gale B.K. An electrostatic microvalve for pneumatic control of microfluidic systems // J. Micromech. Microeng. 2012. Vol. 22. Id. 025019. DOI: 10.1088/0960-1317/22/2/025019
- 11. Yıldırım E., Arıkan M.S., Külah H., Arikan M.S. A normally closed electrostatic parylene microvalve for micro total analysis systems // Sens. Actuators A: Phys. 2012. Vol. 181. P. 81–86. DOI: 10.1016/j.sna.2012.05.008
- 12. Ezkerra A., Fernández L.J., Mayora K., RuanoLópez J.M. A microvalve for lab-on-a-chip applications based on electrochemically actuated SU8 cantilevers // Sens. Actuators B: Chem. 2011. Vol. 155, iss. 2. P. 505–511. DOI: 10.1016/j.snb.2010.12.054
- 13. Das C., Payne F. Design and characterization of low power, low dead volume electrochemically-driven microvalve // Sens. Actuators A: Phys. 2016. Vol. 241. P. 104–112. DOI: 10.1016/j.sna.2016.01.038
- 14. Lee N.E., Soper S., Wang W. Design and fabrication of an electrochemically actuated microvalve // Microsyst. Technol. 2008. Vol. 14. P. 1751–1756. DOI: 10.1007/s00542-008-0594-3
- 15. Harrison D.J., Fluri K., Seiler K., Fan Z.H., Effenhauser C.S., Manz A. Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip // Science. 1993. Vol. 261, iss. 5123. P. 895–897. DOI: 10.1126/science.261.5123.895
- 16. Jacobson S.C., Ermakov S.V., Ramsey J.M. Minimizing the number of voltage sources and fluid reservoirs for electrokinetic valving in microfluidic devices // Anal. Chem. 1999. Vol. 71, no. 15. P. 3273–3276. DOI: 10.1021/ac990059s
- 17. Fazal I., Elwenspoek M.C. Design and analysis of a high pressure piezoelectric actuated microvalve // J. Micromech. Microeng. 2007. Vol. 17, no. 11. P. 2366–2379. DOI: 10.1088/0960-1317/17/11/026
- 18. Nafea M., Nawabjan A., Sultan Mohamed Ali M. A wirelessly-controlled piezoelectric microvalve for regulated drug delivery // Sensors and Actuators A: Physical. 2018. Vol. 279, iss. 15. P. 191–203. DOI: 10.1016/j.sna.2018.06.020
- 19. Chen S., Lu S., Liu Y., Wang J., Tian X., Liu G., Yang Z. A normally-closed piezoelectric micro-valve with flexible stopper // AIP Adv. 2016. Vol. 6, iss. 4. Id. 045112. DOI: 10.1063/1.4947301
- 20. Casals-Terré J., Duch M., Plaza J.A., Esteve J., PérezCastillejos R., Vallés E., Gomez E. Design, fabrication and characterization of an externally actuated ON/OFF microvalve // Sens. Actuators A: Phys. 2008. Vol. 147, iss. 2. P. 600–606. DOI: 10.1016/j.sna.2008.06.022
- 21. Chang P.J., Chang F.W., Yuen M.C., Otillar R., Horsley D.A. Force measurements of a magnetic micro actuator proposed for a microvalve array // J. Micromech. Microeng. 2014. Vol. 24, no. 3. Id. 034005. DOI: 10.1088/0960-1317/24/3/034005
- 22. Pan T., McDonald S.J., Kai E.M., Ziaie B. A magnetically driven PDMS micropump with ball check-valves // Journal of Micromechanics and Microengineering. 2005. Vol. 15, no. 5. P. 1021–1026. DOI: 10.1088/0960-1317/15/5/018
- 23. Fu C., Rummler Z., Schomburg W. Magnetically driven micro ball valves fabricated by multilayer adhesive film bonding // Journal of Micromechanics and Microengineering. 2003. Vol. 13, no. 4. P. S96–S102. DOI: 10.1088/0960-1317/13/4/316
- 24. Gholizadeh A., Javanmard M. Magnetically actuated microfluidic transistors: miniaturized micro-valves using magnetorheological fluids integrated with elastomeric membranes // J. Microelectromechanical Syst. 2016. Vol. 25, iss. 5. P. 922–928. DOI: 10.1109/JMEMS.2016.2586420
- 25. Harper J.C., Andrews J.M., Ben C., Hunt A.C., Murton J.K., Carson B.D., Bachand G., Lovchik J.A., Arndt W.D., Finley M.R., Edwards T.L. Magneticadhesive based valves for microfluidic devices used in low-resource settings // Lab Chip. 2016. Vol. 16. P. 4142–4151. DOI: 10.1039/C6LC00858E
- 26. Liu T.G., Wu J., Xia C., Qian Z.H. A microvalve driven by a ferrofluid-based actuator // Adv. Mater. Res. 2012. Vol. 433-440. P. 3767–3772. DOI: 10.4028/www.scientific.net/amr.433-440.3767
- 27. Hulme S.E., Shevkoplyas S.S., Whitesides G.M. Incorporation of prefabricated screw, pneumatic, and solenoid valves into microfluidic devices // Lab Chip. 2009. Vol. 9, no. 1. P. 79–86. DOI:10.1039/b809673b
- 28. Goldowsky J., Knapp H.F. Gas penetration through pneumatically driven PDMS micro valves // RSC Adv. 2013. Iss. 39. DOI: 10.1039/c3ra42977f
- 29. Perdigones F., Luque A., Quero J.M., Sánchez F.A.P. Pneumatically actuated positive gain microvalve with nchannel metal-oxide semiconductor-like behaviour // Micro Nano Lett. 2011. Vol. 6, no. 6. P. 363–365. DOI: 10.1049/mnl.2011.0150
- 30. Baek J.Y., Park J.Y., Ju J.I., Lee T.S., Lee S.H. A pneumatically controllable flexible and polymeric microfluidic valve fabricated via in situ development // J. Micromech. Microeng. 2005. Vol. 15. P. 1015–1020. DOI: 10.1088/0960-1317/15/5/017
- 31. Samuel R., Thacker C.M., Maricq A.V., Gale B. Simple and cost-effective fabrication of microvalve arrays in PDMS using laser cut molds with application to C. elegans manipulation in microfluidics // J. Micromech. Microeng. 2014. Vol. 24, no. 10. Id. 105007. DOI: 10.1088/0960-1317/24/10/105007
- 32. Kaminaga M., Ishida T., Omata T. Fabrication of pneumatic microvalve for tall microchannel using inclined lithography // Micromachines. 2016. Vol. 7, iss. 12. Id. 224. DOI: 10.3390/mi7120224
- 33. Oh J., Kim G., Noh H. A novel PDMS/Parylene microvalve with three dimentional dome petal shape // Proceedings of the 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Wanchai, Hong Kong, China, 24–28 January 2010. Р. 1075–1078. DOI: 10.1109/MEMSYS.2010.5442396
- 34. Galanopoulos S., Chatzidai N., Melissinaki V., Selimis A., Schizas C., Farsari M., Karalekas D. Design, fabrication and computational characterization of a 3D micro-valve built by multi-photon polymerization // Micromachines. 2014. Vol. 5, no. 3. P. 505–514. DOI: 10.3390/mi5030505
- 35. Wolf R.H., Heuer A.H. TiNi (shape memory) films on silicon for MEMS applications // J. Microelectromech. Syst. 1995. Vol. 4, iss. 4. P. 206–212. DOI: 10.1109/84.475547
- 36. Kahn H., Huff M.A., Heuer A.H. The TiNi shape-memory alloy and its applications for MEMS // J. Micromech. Microeng. 1998. Vol. 8, no. 3. P. 213–221. DOI: 10.1088/0960-1317/8/3/007
- 37. Kohl M., Skrobanek K.D., Miyazaki S. Development of stress-optimised shape memory microvalves // Sensors Actuators A: Phys. 1999. Vol. 72, iss. 3. P. 243–250. DOI: 10.1016/S0924-4247(98)00221-0
- 38. Kohl M., Brugger D., Ohtsuka M., Takagi T. A novel actuation mechanism on the basis of ferromagnetic SMA thin films // Sens Actuators A: Phys. 2004. Vol. 114, iss. 2-3. P. 445–450. DOI: 10.1016/j.sna.2003.11.006
- 39. Kohl M., Schmitt M., Backen A., Schultz L., Krevet B., Fähler S. Ni-Mn-Ga shape memory nanoactuation // Appl Phys Lett. 2014. Vol. 104, iss. 4. Id. 043111. DOI: 10.1063/1.4863667
- 40. Münchow G., Dadic D., Doffing F., Hardt S., Drese K.S. Automated chip-based device for simple and fast nucleic acid amplification // Expert Rev Mol Diagn. 2005. Vol. 5, no. 4. P. 613–620. DOI: 10.1586/14737159.5.4.613
- 41. Megnin C., Kohl M. Shape memory alloy microvalves for a fluidic control system // Journal of Micromechanics and Microengineering. 2014. Vol. 24, no. 2. Id. 025001. DOI: 10.1088/0960-1317/24/2/025001
- 42. Megnin C., Moradi B., Zuern J. et al. Shape memory alloy based controllable multi-port microvalve // Microsyst Technol. 2020. Vol. 26. P. 793–800. DOI: 10.1007/s00542-019-04614-w
- 43. Orecchio F.M., Tommaso V., Santaniello T., Castiglioni S., Pezzotta F., Monti A., Butera F., Maier J.A.M., Milani P. A novel fluidic platform for semi-automated cell culture into multiwell-like bioreactors // Micromachines. 2022. Vol. 13, no. 7. Id. 994. DOI: 10.3390/mi13070994
- 44. Liu W.-Y., Fu X.-T., Zhang X.-Q., Hu W.-Y. A new shape memory alloy microvalve based on surface acoustic wave // Ferroelectrics. 2016. Vol. 504, no. 1. P. 22–30. DOI: 10.1080/00150193.2016.1238709
- 45. Nagai M., Oguri M., Shibata T. Characterization of lightcontrolled Volvox as movable microvalve element assembled in multilayer microfluidic device // Jpn. J. Appl. Phys. 2015. Vol. 54, no. 6. Id. 067001. DOI: 10.7567/JJAP.54.067001
- 46. Liu R.H., Yang J., Lenigk R., Bonanno J., Grodzinski P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection // Anal. Chem. 2004. Vol. 76, iss. 7. P. 1824–1831. DOI: 10.1021/ac0353029
- 47. Shaikh K.A., Li S., Liu C. Development of a latchable microvalve employing a low-melting-temperature metal alloy // Journal of Microelectromechanical Systems. 2008. Vol. 17, no. 5. P. 1195–1203. DOI: 10.1109/JMEMS.2008.2003055
- 48. Beck A., Obst F., Gruner D., Voigt A., Mehner P.J., Gruenzner S., Koerbitz R., Shahadha M.H., Kutscher A., Paschew G., Marschner U., Richter A. Fundamentals of hydrogel-based valves and chemofluidic transistors for Labon-a-Chip technology: a tutorial review // Advanced Materials Technologies. 2023. Vol. 8, no. 3. Id. 2200417. DOI: 10.1002/admt.202200417
- 49. Beebe D.J., Moore J.S., Bauer J.M., Yu Q., Liu R.H., Devadoss C., Jo B.H. Functional hydrogel structures for autonomous flow control inside microfluidic channels // Nature. 2000. Vol. 404 (6778). P. 588–590. DOI: 10.1038/35007047
- 50. Liu R.H., Yu Q., Beebe D.J. Fabrication and characterization of hydrogel-based microvalves // Journal of Microelectromechanical Systems. 2002. Vol. 11, no. 1. P. 45–53. DOI: 10.1109/84.982862
- 51. Wang J., Chen Z., Mauk M., Hong K.-S., Li M., Yang S., Bau H.H. Self-actuated, thermo-responsive hydrogel valves for Lab on a Chip. // Biomedical Microdevices. 2005. Vol. 7, no. 4. P. 313–322. DOI: 10.1007/s10544-005-6073-z