МИКРОКЛАПАНЫ В МИКРОФЛЮИДНЫХ УСТРОЙСТВАХ. ЧАСТЬ 2. ПАССИВНЫЕ МИКРОКЛАПАНЫ (ОБЗОР)

Автор: Г. Е. Рудницкая, А. Н. Зубик, А. А. Евстрапов

Журнал: Научное приборостроение @nauchnoe-priborostroenie

Рубрика: Системный анализ приборов и измерительных методик

Статья в выпуске: 3, 2024 года.

Бесплатный доступ

Клапаны являются важными функциональными элементами, необходимыми для создания микрофлюидных устройств, платформ "лаборатория на чипе" и микросистем полного анализа (μTAS, micro total analysis system). Идеальная микрофлюидная система объединяет многочисленные последовательные операции, обеспечивает точное пространственно-временное высвобождение реагентов и контроль потока, а также пригодна для быстрого и недорогого изготовления. Поэтому разработка клапанов является одной из важнейших задач при построении подобных систем. По сравнению с активными клапанами пассивные более удобны для интеграции в микрофлюидные устройства, поскольку они позволяют регулировать скорость потока без сложной обратной связи и обеспечивать перекрытие потока, смешивание потоков и т.д. Пассивные микроклапаны имеют меньшую стоимость и более простую конструкцию, чем активные. В статье рассматриваются пассивные обратные и капиллярные микроклапаны, приводятся примеры разных конструкций.

Еще

Микрофлюидика, микрофлюидные устройства, микроклапан, пассивный клапан, капиллярные микроклапаны

Короткий адрес: https://sciup.org/142242714

IDR: 142242714

Список литературы МИКРОКЛАПАНЫ В МИКРОФЛЮИДНЫХ УСТРОЙСТВАХ. ЧАСТЬ 2. ПАССИВНЫЕ МИКРОКЛАПАНЫ (ОБЗОР)

  • 1. Sesen M., Rowlands C.J. Thermally-actuated microfluidic membrane valve for point-of-care applications // Microsyst Nanoeng. 2021. Vol. 7. Id. 48. DOI: 10.1038/s41378-021-00260-3
  • 2. Keating S.J., Gariboldi M.I., Patrick W.G., Sharma S., Kong D.S., Oxman N. 3D Printed Multimaterial Microfluidic Valve // PLoS ONE. 2016. Vol. 11, no. 8. Id. e0160624. DOI: 10.1371/journal.pone.0160624
  • 3. Qian J.-Y., Hou C.-W., Li X.-J., Jin Z.-J. Actuation Mechanism of Microvalves: A Review // Micromachines. 2020. Vol. 11, no. 2. Id. 172. DOI: 10.3390/mi11020172
  • 4. Зубик А.Н., Рудницкая Г.Е., Евстрапов А.А. Микроклапаны в микрофлюидных устройствах. Часть 1. Активные микроклапаны // Научное приборостроение. 2023. Т. 33, № 4. С. 3–27. URL: http://iairas.ru/mag/2023/abst4.php#abst1 5. Oh K.W., Ahn C.H. A review of microvalves // J. Micromech. Microeng. 2006. Vol. 16, no. 5. P. R13–R39. DOI: 10.1088/0960-1317/16/5/R01
  • 6. Chang Y.J., Chen S.C., Hsu C.L. Study on microchannel design and burst frequency detection for centrifugal microfluidic system // Adv Mat Sci Eng. 2013. Id. 137347. DOI: 10.1155/2013/137347
  • 7. Yamada M., Seki M. Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices // Anal Chem. 2004. Vol. 76. P. 895–899. DOI: 10.1021/ ac0350007
  • 8. Wu J., Fang H., Zhang J., Yan S. Modular microfluidics for life sciences // J. Nanobiotechnol. 2023. Vol. 21. Id. 85. DOI: 10.1186/s12951-023-01846-x
  • 9. Yang B., Lin Q. A Planar Compliance-Based SelfAdaptive Microfluid Variable Resistor // Journal of Microelectromechanical Systems. 2007. Vol. 16, no. 2. P. 411–419. DOI: 10.1109/jmems.2007.892892
  • 10. Ni J., Huang F., Wang B., Li B., Lin Q. A planar PDMS micropump using in-contact minimized-leakage check valves // Journal of Micromechanics and Microengineering. 2010. Vol. 20, no. 9. Id. 095033. DOI: 10.1088/0960-1317/20/9/095033
  • 11. Chang H.-J., Ye W., Kartalov E.P. Quantitative modeling of the behaviour of microfluidic autoregulatory devices // Lab on a Chip. 2012. Vol. 12, no. 10. P. 1890–1896. DOI: 10.1039/c2lc20956j
  • 12. Zhang X., Oseyemi A.E. Microfluidic Passive Valve with Ultra-Low Threshold Pressure for High-Throughput Liquid Delivery // Micromachines. 2019. Vol. 10, no. 12. Id. 798. DOI: 10.3390/mi10120798
  • 13. Brask A., Snakenborg D., Kutter J.P., Bruus H. AC electroosmotic pump with bubble-free palladium electrodes and rectifying polymer membrane valves // Lab Chip. 2006. Vol. 6, no. 2. P. 280–288. DOI: 10.1039/b509997h
  • 14. Doh I., Cho Y.-H. Passive flow-rate regulators using pressure-dependent autonomous deflection of parallel membrane valves // Lab on a Chip. 2009. Vol. 9, no. 14. Id. 2070. DOI: 10.1039/b821524c
  • 15. Zhang Х., Zhang Z. Microfluidic Passive Flow Regulatory Device with an Integrated Check Valve for Enhanced Flow Control // Micromachines. 2019. Vol.10, no. 10. Id. 653. DOI: 10.3390/mi10100653
  • 16. Zhang X., Wang X., Chen K., Cheng J., Xiang N., Ni Z. Passive flow regulator for precise high-throughput flow rate control in microfluidic environments // RSC Advances. 2016. Vol. 6, no. 38. P. 31639–31646. DOI: 10.1039/c6ra01093h
  • 17. Hyeon J., So H. Microfabricaton of microfluidic check valves using comb-shaped moving plug for suppression of backflow in microchannel // Biomed Microdevices. 2019. Vol. 21. Id. 19. DOI: 10.1007/s10544-019-0365-1
  • 18. Lau K.H., Giridhar A., Harikrishnan S., Satyanarayana N., Sinha S.K. Releasing high aspect ratio SU-8 microstructures using AZ photoresist as a sacrificial layer on metallized Si substrates // Microsystem Technologies. 2013. Vol. 19, no. 11. P. 1863–1871. DOI: 10.1007/s00542-013-1740-0
  • 19. Kim T., Jo K. Microfluidic Device to Maximize Capillary Force Driven Flows for Quantitative Single-Molecule DNA Analysis // BioChip J. 2023. Vol. 17. P. 384–392. DOI: 10.1007/s13206-023-00115-1
  • 20. Glière A., Delattre C. Modeling and fabrication of capillary stop valves for planar microfluidic systems // Sensors and Actuators A: Physical. 2006. Vol. 130–131. P. 601–608. DOI: 10.1016/j.sna.2005.12.011
  • 21. Andersson H., van der Wijngaart W., Griss P., Niklaus F., Stemme G. Hydrophobic valves of plasma deposited octafluorocyclobutane in DRIE channels // Sensors and Actuators B: Chemical. 2001. Vol. 75, no. 1-2. P. 136–141. DOI: 10.1016/s0925-4005(00)00675-4
  • 22. Man P.F., Mastrangelo C.H., Burns M.A., Burke D.T. Microfabricated capillary driven stop valves and sample injector // Proc. MEMS Conference, Heidelberg, Germany, January 25–29, 1998. DOI: 10.1109/MEMSYS.1998.659727
  • 23. Zoval J.V., Madou M.J. Centrifuge-Based Fluidic Platforms // Proceedings of the IEEE. 2004. Vol. 92, no. 1. P. 140–153. DOI: 10.1109/jproc.2003.820541
  • 24. Wang S., Zhang X., Ma C., Yan S., Inglis D., Feng S. A Review of Capillary Pressure Control Valves in Microfluidics // Biosensors (Basel). 2021. Vol. 11, no. 10. Id. 405. DOI: 10.3390/bios11100405
  • 25. Zhang Y., Chen Y., Huang J., Liu,Y., Peng J., Chen S., Song K., Ouyang X., Cheng H., Wang X. Skin-interfaced
  • microfluidic devices with one-opening chambers and hydrophobic valves for sweat collection and analysis // Lab Chip. 2020. Vol. 20. P. 2635–2645. DOI: 10.1039/D0LC00400F
  • 26. Mohammed M.I., Desmulliez M.P.Y. Characterization and Theoretical Analysis of Rapidly Prototyped Capillary Action Autonomous Microfluidic Systems // Journal of Microelectromechanical Systems. 2014. Vol. 23, no. 6. P. 1408–1416. DOI: 10.1109/jmems.2014.2314470
  • 27. Zimmermann M., Hunziker P., Delamarche E. Valves for autonomous capillary systems // Microfluid. Nanofluid. 2008. Vol. 5. P. 395–402. DOI: 10.1007/s10404-007-0256-2
  • 28. Olanrewaju A., Beaugrand M., Yafia M., Juncker D. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits // Lab Chip. 2018. Vol. 18. P. 2323–2347. DOI: 10.1039/C8LC00458G
  • 29. Melin J., Roxhed N., Gimenez G., Griss P., van der Wijngaart W., Stemme G. A liquid-triggered liquid microvalve for on-chip flow control // Sens. Actuators, B: Chemical. 2004. Vol. 100, no. 3. P. 463–468. DOI: 10.1016/j.snb.2004.03.010
  • 30. Safavieh R., Juncker D. Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements // Lab Chip. 2013. Vol. 13. P. 4180–4189. DOI: 10.1039/C3LC50691F
  • 31. Olanrewaju A.O., Robillard A., Dagher M., Juncker D. Autonomous microfluidic capillaric circuits replicated from 3D-printed molds // Lab Chip. 2016. Vol. 16. P. 3804–3814. DOI: 10.1039/C6LC00764C
  • 32. Li J., Liang C., Zhang B., Liu C. A comblike time-valve used in capillary-driven microfluidic devices // Microelectronic Engineering. 2017. Vol. 173. P. 48–53. DOI: 10.1016/j.mee.2017.03.013
  • 33. Image. URL: ars.els-cdn.com/content/image/1-s2.0-S0167931717301260-fx1_lrg.jpg (accessed 02.04.2024)
  • 34. Chang Y.-J., Lin Y.-T., Liao C.-C. Chamfer-Type Capillary Stop Valve and Its Microfluidic Application to Blood Typing Tests // SLAS Technology: Translating Life Sciences Innovation. 2019. Vol. 24, no. 2. P. 188–195. DOI: 10.1177/2472630318808196
  • 35. Hitzbleck M., Avrain L., Smekens V., Lovchik R.D., Mertens P., Delamarche E. Capillary soft valves for microfluidics // Lab Chip. 2012. Vol. 12. P. 1972–1978. DOI: 10.1039/C2LC00015F
  • 36. Juncker D., Schmid H., Drechsler U., Wolf H., Wolf M., Michel B., de Rooij N., Delamarche E. Autonomous Microfluidic Capillary System // Anal. Chem. 2002. Vol. 74. P. 6139–6144. DOI: 10.1021/ac0261449
  • 37. Cesaro-Tadic S., Dernick G., Juncker D., Buurman G., Kropshofer H., Michel B., Fattinger C., Delamarche E. High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems // Lab on a Chip. 2004. Vol. 4, no. 6. P. 563–569. DOI: 10.1039/b408964b
  • 38. Ahn C.H., Choi J.-W., Beaucage G., Nevin J., Lee J.-B., Puntambekar A., Lee R.J.Y. Disposable Smart Lab on a Chip for Point-of-Care Clinical Diagnostics // Proceedings of the IEEE. 2004. Vol. 92, no. 1. P. 154–173. DOI: 10.1109/jproc.2003.820548
  • 39. Pouletty P.J., Ingalz T. Matrix controlled method of delayed fluid delivery for assays. US Pat., no. 5135872, Aug. 4, 1992.
  • 40. Lenk G.A., Stemme G., Roxhed N. Delay valving in capillary driven devices based on dissolvable thin films // Proceedings of The 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS). San Antonio, USA, 2014. P. 216–218. URL: https://www.proceedings.com/content/024/024717webtoc.pdf
  • 41. ЗАО "ФИРМА ГАЛЕН". URL: galen.ru/item/diagnosticheskie-paneli-i-rashodnyematerialy-dlya-immunofluorestsentnogo-analizatoratriage-meterpro/ (accessed 02.04.2024)
  • 42. Xie Y., You H., Gao Z., Huang Z., Yang M. An Effective Capillary Valve based on Micro-hole Array for Microfluidic Systems // Anal Sci. 2018. Vol. 34, no. 11. P. 1323–1327. DOI: 10.2116/analsci.18p257
  • 43. Sun C., You H., Xie Y., Xu R.X. Performance Optimization of Microvalves Based on a Microhole Array for Microfluidic Chips // Journal of Analytical Methods in Chemistry. 2020. Id. 8842890. DOI: 10.1155/2020/8842890
  • 44. Tesla N. Valvular Conduit. US Patent no. 1329559A, 3 February 1920.
  • 45. Nguyen Q.M., Abouezzi J., Ristroph L. Early Turbulence and Pulsatile Flows Enhance Diodicity of Tesla’s Macrofluidic Valve // Nat. Commun. 2021. Vol. 12. Id. 2884. DOI: 10.1038/s41467-021-23009-y
  • 46. Nobakht A.Y., Shahsavan M., Paykani A. Numerical Study of Diodicity Mechanism in Different Tesla-Type Microvalves // Journal of Applied Research and Technology. 2013. Vol. 11, no. 6. P. 876–885. DOI: 10.1016/s1665-6423(13)71594-3
  • 47. Liu Z., Shao W.-Q., Sun Y., Sun B.-H. Scaling law of the one-direction flow characteristics of symmetric Tesla valve // Engineering Applications of Computational Fluid Mechanics. 2022. Vol. 16, no. 1. P. 441–452. DOI: 10.1080/19942060.2021.2023648
  • 48. Purwidyantri A., Prabowo B.A. Tesla Valve Microfluidics: The Rise of Forgotten Technology // Chemosensors. 2023. Vol. 11, no. 4. Id. 256. DOI: 10.3390/chemosensors11040256
  • 49. Wang C.-T., Chen Y.-M., Hong P.-A., Wang Y.-T. Tesla Valves in Micromixers // International Journal of Chemical Reactor Engineering. 2014. Vol. 12, no. 1. P. 397–404. DOI: 10.1515/ijcre-2013-0106
  • 50. Gamboa A.R., Morris C.J., Forster F.K. Improvements in Fixed-Valve Micropump Performance Through Shape Optimization of Valves // Journal of Fluids Engineering. 2005. Vol. 127, no. 2. P. 339–346. DOI: 10.1115/1.1891151
  • 51. Abdelwahed M., Chor N., Malek R. Reconstruction of Tesla micro-valve using topological sensitivity analysis // Adv. Nonlinear Anal. 2020. Vol. 9. P. 567–590. DOI: 10.1515/anona-2020-0014
  • 52. Du G., Alsenani T.R., Kumar J., Alkhalaf S., Alkhalifah T., Alturise F., Almujibah H., Znaidia S., Deifalla A. Improving thermal and hydraulic performances through artificial neural networks: An optimization approach for Tesla valve geometrical parameters // Case Studies in Thermal Engineering. 2023. Vol. 52. Id. 103670. DOI: 10.1016/j.csite.2023.103670
  • 53. Zhang S., Winoto S.H., Low H.T. Performance Simulations of Tesla Microfluidic Valves // First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B. ASMEDC, Sanya, China, 10–13 January 2007. P. 15–19. DOI: 10.1115/mnc2007-21107
  • 54. Shi H., Cao Y., Zeng Y., Zhou Y., Wen W., Zhang C., Zhao Y., Chen Z. Wearable Tesla Valve-Based Sweat Collection Device for Sweat Colorimetric Analysis // Talanta. 2022. Vol. 240. Id. 123208. DOI: 10.1016/j.talanta.2022.123208
  • 55. Mohammadzadeh K., Kolahdouz E.M., Shirani E., Shafii M.B. Numerical study on the performance of Tesla type
  • microvalve in a valveless micropump in the range of low frequencies // J Micro-Bio Robotics. 2013. Vol. 8. P. 145–159. DOI: 10.1007/s12213-013-0069-1
  • 56. Hong C.-C., Choi J.-W., Ahn C.H. A novel in-plane passive microfluidic mixer with modified Tesla structures // Lab on a Chip. 2004. Vol. 4, no. 2. P. 109–113. DOI: 10.1039/b305892a
  • 57. Wang H., Chen X. Optimization of micromixer based on an improved Tesla valve-typed structure // J Braz. Soc. Mech. Sci. Eng. 2022. Vol. 44. Id. 143. DOI: 10.1007/s40430-022-03454-6
  • 58. Kubar A.A., Cheng J., Kumar S., Liu S., Chen S., Tian J. Strengthening mass transfer with the Tesla-valve baffles to increase the biomass yield of Arthrospira platensis in a column photobioreactor // Bioresour Technol. 2021. Vol. 320 (Pt. A). Id. 124337. DOI: 10.1016/j.biortech.2020.124337
  • 59. García-Morales N.G., Morales-Cruzado B., CamachoLópez S., Romero-Méndez R., Devia-Cruz L.F., PérezGutiérrez F.G. Numerical modeling of a micropump without mobile parts actuated by thermocavitation bubbles // Microsyst. Technol. 2021. Vol. 27. P. 801–812. DOI: 10.1007/s00542-020-04998-0
  • 60. Leigh S.C., Summers A.P., Hoffmann S.L., German D.P. Shark Spiral Intestines May Operate as Tesla Valves // Proc. R. Soc. B Biol. Sci. 2021. Vol. 288, iss. 1955. Id. 20211359. DOI: 10.1098/rspb.2021.1359
  • 61. Palecek A. Shark Bellies Flow like Tesla Valves // J. Exp. Biol. 2021. Vol. 224, no. 19. Id. JEB237339. DOI: 10.1242/jeb.237339
  • 62. Farmer C.G., Cieri R.L., Pei S. A Tesla Valve in a Turtle Lung: Using Virtual Reality to Understand and to Communicate Complex Structure-Function Relationships // J. Morphol. 2019. Vol. 280, iss. S1. P. S1—S244. DOI: 10.1002/jmor.21003
  • 63. Peshin S., Madou M., Kulinsky L. Microvalves for Applications in Centrifugal Microfluidics // Sensors. 2022. Vol. 22, no. 22. Id. 8955. DOI: 10.3390/s22228955
  • 64. Peshin S., George D., Shiri R., Kulinsky L., Madou M. Capillary Flow-Driven and Magnetically Actuated MultiUse Wax Valves for Controlled Sealing and Releasing of Fluids on Centrifugal Microfluidic Platforms // Micromachines. 2022. Vol. 13, no. 2. Id. 303. DOI: 10.3390/mi13020303
  • 65. Woolf M.S., Dignan L.M., Lewis H.M., Tomley C.J., Nauman A.Q., Landers J.P. Optically-controlled closable microvalves for polymeric centrifugal microfluidic devices // Lab Chip. 2020. Vol. 20, № 8. P. 1426-1440. DOI: 10.1039/c9lc01187k
  • 66. Strohmeier O., Keller M., Schwemmer F., Zehnle S., Mark D., von Stetten F., Zengerle R., Paust N. Centrifugal microfluidic platforms: advanced unit operations and applications // Chemical Society Reviews. 2015. Vol. 44, no. 17. P. 6187–6229. DOI: 10.1039/c4cs00371c
  • 67. Bohm S., Phi H.B., Moriyama A., Runge E., Strehle S., König J., Cierpka C., Dittrich L. Highly efficient passive Tesla valves for microfluidic applications // Microsyst Nanoeng. 2022. Vol. 8. Id. 97. DOI: 10.1038/s41378-022-00437-4
Еще
Статья научная