Mission ‘sustainable agriculture’: mitigating abiotic stress with nano particles
Автор: Sen Supatra
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 3 т.20, 2024 года.
Бесплатный доступ
In agro-ecosystems, abiotic stress effects can create havoc diminishing productivity and severely deteriorating yield and yield quality. To meet the rising food and feed crisis, rigorous control of productivity and yield losses in agriculture due to environmental stress must be executed. Coupled with climate change, abiotic stress is causing havoc to crop physiology, productivity and quality of agricultural produce. With the SDG 2 target of Zero Hunger to an unprecedented 8.5 billion by 2030, such massive loss of agricultural yield and economy poses a huge challenge. Stress mediated responses of plants are multiple and varied. Nanotechnology is an emerging field which could profoundly affect crop stress physiology through biotechnological and biochemical interventions to usher in a new era of Sustainable Agriculture and Zero Hunger. Such interventions may be suggested for a paradigm shift towards sustainable agriculture and to meet the massive global challenge of 70% rise in crop output for the rising millions of 2050.
Abiotic stress, sustainability, crop stress physiology, phytonanotechnology, stress resilient crops
Короткий адрес: https://sciup.org/143182809
IDR: 143182809
Список литературы Mission ‘sustainable agriculture’: mitigating abiotic stress with nano particles
- Adrees, M. Z.S. Khan, S. Ali, M. Hafeez, S. Khalid, M.Z. ur Rehman, et al. (2020). Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanoparticles Chemosphere, 238, Article 124681.
- Ahmed, TM. Noman, M. Rizwan, S. Ali, M.S. Shahid, B. Li. (2021) Recent progress on the heavy metals ameliorating potential of engineered nanomaterials in rice paddy: a comprehensive outlook on global food safety with nanotoxicitiy issues Crit. Rev. Food Sci. Nutr. pp. 1-15.
- Al-Khayri JM, Rashmi R, Surya Ulhas R, Sudheer WN, Banadka A, Nagella P, Aldaej MI, Rezk AA, Shehata WF, Almaghasla MI. (2023). The Role of Nanoparticles in Response of Plants to Abiotic Stress at Physiological, Biochemical, and Molecular Levels. Plants (Basel). 12(2), 292. .
- Cinisli, K.T., Ugar, S.M., and Dikba§, N. (2019) Use of nanomaterials in agriculture. Yuzuncu Yil Univ. J. Agric. Sci., 29, 817-831. Doi.
- Dubey, A. and Mailapalli, D.R. (2016) Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. Sustain Agric Rev., 19, 307-30.
- Ghafar, M.A., Akram, N.A., Saleem, M.H., Wang, J., Wijaya, L. and Alyemeni, M.N. (2021) Ecotypic Morphological and Physio-Biochemical Responses of Two Differentially Adapted Forage Grasses, Cenchrus ciliaris L. and Cyperus arenarius Retz. to Drought Stress. Sustainability, 13, 8069.
- Gill, S. S. and Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Bioch., 48, 909-930.
- Haghighi, M. and Pessarakli, M. (2013) Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage Sci. Hortic., 161, 111-117.
- Hasanuzzaman, M., Nahar, K., Rahman, A., Inafuku, M., Oku, H. and Fujita, M. (2018) Exogenous nitric oxide donor and arginine provide protection against short-term drought stress in wheat seedlings. Physiol. Mol. Biol. Plants, 24, 993-1004.
- Hussain, S., Khalid, M.F., Saqib, M., Ahmad, S., Zafar, W., Rao, M.J., Morillon, R. and Anjum M.A. (2018) Drought Tolerance in Citrus Rootstocks is Associated with Better Antioxidant Defense Mechanism. Acta Physiol. Plant. 40,135.
- Iravani, S. (2011) Green synthesis of metal nanoparticles using plants. Green Chem., 13, 26382650
- Jiang, M., Song, Y., Kanwar, M.K. et al. (2021). Phytonanotechnology applications in modern agriculture. J Nanobiotechnol. 19, 430.
- Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M. and Sharma, A. (2020) The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production. Appl. Sci., 10, 5692.
- Khairy, A. M., Tohamy, M. R., Zayed, M. A., Mahmoud, S. F., El-Tahan, A. M., El-Saadony, M. T., et al. 2022. Eco-friendly application of nano-chitosan for controlling potato and tomato bacterial wilt. Saudi J. Biol. Sci. 29: 2199-2209.
- Khan, F.; Shariq, M.; Asif, M.; Siddiqui, M.A.; Malan, P.; Ahmad, F. (2022) Green Nanotechnology: Plant-Mediated Nanoparticle Synthesis and Application.
- Novak J. Abiotic Stress in Crop Production. (2023) Int J Mol Sci., Apr 1, 24(7):6603.
- Liu, H, Able, A.J. and Able, J.A. (2022) Priming crops for the future: rewiring stress memory. Trends Plant Interactions between temperature and drought in global and regional crop yield variability during 1961-2014. PLoS One, 26, 12(5), e0178339.
- Matres, J.M., Hilscher, J., Datta, A., Armario-Najera, V., Baysal, C., He, W., Huang, X., Zhu, C., Valizadeh-Kamran, R., Trijatmiko, K.R., et al. (2021) Genome editing in cereal crops: An overview. Transgenic. Res. 30, 461-498.
- Mukherjee, R. and Sen, S. (2021a) Agricultural Sustainability through Nitrogen Fixation: Approaches and Techniques. Harvest 6(1), 48-55.
- Mukherjee, R and Sen, S. (2021b) Role of Biological Nitrogen Fixation (BNF) in Sustainable Agriculture: A Review. Int. J. Adv. Life Sci. Res. 4(3), 01- 07.
- Mushtaq, M., Ahmad Dar, A., Skalicky, M., Tyagi, A., Bhagat, N., Basu, U., Bhat, B.A., Zaid, A., Ali, S., Dar, T.U.H., et al. (2021). CRISPR-based genome editing tools: Insights into technological breakthroughs and future challenges. Genes, 12,
- Allu, A.D. (2022) Molecular basis of priming-induced acquired tolerance to multiple abiotic stresses in plants, Journal of Experimental Botany, 73(11), 3355-3371,
- Nair, R. (2016) Effects of nanoparticles on plant growth and development. Plant Nanotechnol., 5, 95-118.
- Nikoleta-Kleio, D., Theodoras, D. and Roussos, P.A. (2020) Antioxidant defense system in young olive plants against drought stress and mitigation of adverse effects through external application of alleviating products. Sci.Hortic-Amsterdam, 259, 11.
- Noctor, G. and Foyer, C.H. (2016) Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol., 171, 1581-1592.
- Per, T. S., Khan, N. A., Reddy, P. S., Masood, A., Hasanuzzaman, M., Khan, M. I. R., et al. (2017) Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiol. Bioch., 115, 126-140. 10.
- Raja, V., Majeed, U., Kang, H., Andrabi, K.I. and John, R. (2017) Abiotic stress: Interplay between ROS, hormones and MAPKs. Environ. Exp. Bot., 137, 142-157.
- Santana, I., Wu, H., Hu, P. and Giraldo, J. P. (2020) Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun., 11, 2045.
- Sarraf, M.K. Vishwakarma, V. Kumar, N. Arif, S. Das, R. Johnson, E. Janeeshma, J.T. Puthur, S. Aliniaeifard , D.K. Chauhan, M. Fujita, M. Hasanuzzaman(2022 ) Metal/metalloid-based nanomaterials for plant abiotic stress tolerance: an overview of the mechanisms Plants, 11 (3), 316
- Sen, S. and Mukherji, S. (1998a) Seasonal effects on nitrogenous compounds in two crop plants. Environment and Ecology, 16(4), 871-874.
- Sen, S. and Mukherji, S. (1998b) Seasonal variation in biochemical constituents of Abelmoschus esculentus (L.) Moench and Lycopersicon esculentum Mill. Journal of Interacademicia 2(3), 118-123.
- Nanomaterials, 12, 673. Kopecka R, Kameniarova M, Cerny M, Brzobohaty B, Sci. 27 (7), 699-716. Matiu, M, Ankerst, D.P. and Menzel, A. (2017) 797.
- Nair, A.U., Naik Bhukya D.P., Sunkar,R., Chavali,S. and Sen, S. (1999a) Biochemical evaluation of the Okra Abelmoschus esculentus (L.) Moench fruit under seasonal environmental changes. Ecology Environment and Conservation 5(4), 381-384
- Sen, S. (1999b) Changes in photosynthetic parameters in Abelmoschus esculentus (L.) Moench as affected by seasonal environmental conditions. Asian Journal of Microbiology Biotechnology and Environmental Science, 1(3-4), 157-161.
- Sen, S. (2000) Season-induced alterations in levels of antioxidants and polygalacturonase activity in tomato (Lycopersicon esculentum Mill.) fruit. Journal of Environment and Pollution 7(4), 303308
- Sen, S. (2006) Respiration and activity of respiratory enzymes in Okra (Abelmoschus esculentus) under seasonal environmental conditions of West Bengal, India. Journal of Environmental Biology 27(2), 287292.
- Sen, S. (2007) Changes in Phosphorus Metabolism in Lycopersicon esculentum Mill. as affected by seasonal environmental conditions of West Bengal (India). Eco-Chronicle 2(2), 81-86
- Sen, S. (2016) Eco-Physiology of two Indian Crop Plants: Impact of Seasonal Stress. Lambert Academic Publishing ISBN 978-3-659-91778-3 Sen, 10849-10862.
- Sen, S. (2023) Impact of Seasonal Stress on Reactive Oxygen Species and Scavenging Enzymes of Two Crop Plants Growing Under Tropical Indian Conditions. Journal of Stress Physiology & Biochemistry, 19(4), 43-55.
- Sen, S. (2024). Towards Zero Hunger: Abiotic Stress on Crop Plant Physiology and Productivity in Critical Studies in Science Volume 1, pp. 3-8,
- Sharma, VK, R.A. Yngard, Y. Lin (2009). Silver nanoparticles: green synthesis and their antimicrobial activities Adv. Colloid Interface Sci., 145 (1-2), 83-96,
- Song, GY. Gao, H. Wu, W. Hou, C. Zhang, H. Ma (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ. Toxicol. Chem., 31, 2147-2152.
- Watts, N., Amann, M., Arnell, N., Ayeb-Karlsson, S., Beagley, J., Belesova, K., et al. (2021) The 2020 report of the lancet countdown on health and climate change: responding to converging crises. Lancet, 397, 129-170.
- Wu, H. and Li, Z. (2022) Recent advances in nano-enabled agriculture for improving plant performance. Crop J. 10, 1-12.
- Zhang, H., Zhu, J., Gong, Z. et al. (2022) Abiotic stress responses in plants. Nat Rev Genet 23, 104-119.
- S. (2020) Antioxidative Defense in Plants In Response To Seasonal Environmental Stress. Asian Journal of Science and Technology 11 (3).