Митохондриальные изменения в канцерогенезе как цель противоопухолевой терапии (обзор)

Автор: Потемина Татьяна Евгеньевна, Гузиков Эдуард Валерьевич

Журнал: Вестник медицинского института "РЕАВИЗ": реабилитация, врач и здоровье @vestnik-reaviz

Рубрика: Клиническая медицина

Статья в выпуске: 4 (46), 2020 года.

Бесплатный доступ

Причины и механизмы развития рака в настоящее время являются одной из актуальных проблем медицины. Основным вариантом на сегодняшний день является мутационная теория. Выявление системы генных мутаций, в том числе и в митохондриях, приводящих к тому или иному виду опухолей, сделали возможным разработку персонализированной так называемой таргетной терапии злокачественных опухолей.

Канцерогенез, генные мутации, митохондрии, таргетная терапия

Короткий адрес: https://sciup.org/143172381

IDR: 143172381

Список литературы Митохондриальные изменения в канцерогенезе как цель противоопухолевой терапии (обзор)

  • Porporato Р.Е. et al. Mitochondrial metabolism and cancer // Cell Res. - 2018. - № 28 (3). - P. 265-280.
  • Senft D., Ronai Z.A. Regulators of mitochondrial dynamics in cancer. Curr. Opin. // Cell Biol. - 2016. - Vol. 39. - P. 43-52.
  • Warburg O. On the origin of cancer cells / O. Warburg // Science. - 1956. - Vol. 123, № 3191. - P. 309314.
  • Taganovich A.D. Patologicheskaya bioximiya. - M.: BINOM, 2013. - 448 s.
  • Isidore A. et al. breast carcinomas funfill the Warburg hypothesis and providt metabolic markers of cancerprognosis // Cfncerogenesis. - 2005. - Vol. 26, № 12. - P. 2095-2104.
  • Guezva M. et al. The bioenergeticsignature of cancer: a marker of tumor progression // Cancer. Res. - 2002. -Vol. 62, № 22. - P. 6674-6681.
  • Lopez-Rios F. Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas // Cancer Res. - 2007. - Vol. 67, № 19. - P. 9013-9017.
  • M. Wu Neilson A. et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells // Am. J. Physiol. Cell. Physiol. - 2007 - Vol. 292, № 1. - P. C125-136.
  • Schulz T.J. et al. Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited // J. Biol. Chem. - 2006. - Vol. 281, № 2. - P. 977-981.
  • Gaude, E., Frezza C. Defects in mitochondrial metabolism and cancer // Cancer. Metab. - 2014. - Vol. 2. -P. 10.
  • Morin A., Letouzé E., Gimenez-Roqueplo A.P., Favier J. Oncometabolitesdriven tumorigenesis: From genetics to targeted therapy // Int. J. Cancer. - 2014. - Vol. 135, № 10. - P. 2237-2248.
  • Kiebish M.A. et al. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer // J. Lipid. Res. - 2008. - Vol. 49, № 12. -P.2545-2556.
  • Samudio I., Fiegl M., Andreeff M. Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism // Cancer Res. - 2009. - Vol. 69, № 6. - P. 2163-2166.
  • Ayyasamy V et al. Cellular model of Warburg effect identifies tumor promoting function of UCP2 in breast cancer and its suppression by genipin // PLoS One. - 2011. - Vol. 6 (9). - P. e24792.
  • Ibsen K.H. The Crabtree effect: a review // Cancer Res. - 1961. - Vol. 21. - P. 829-841.
  • Eakin R.T. et al. Carbon-13 nuclear magnetic resonance spectroscopy of living cells and their metabolism of a specifically labeled 13C substrate // FEBS Lett. - 1972. - Vol. 28(3). - P. 259-264.
  • Weinhouse S., Krebsforsch Z. The Warburg hypothesis fifty years later // Klin. Onkol. Cancer Res. Clin. Oncol. - 1 976. - Vol. 87, № 2. - P. 115-126.
  • Pedersen P.L. Tumor mitochondria and the bioenergetics of cancer cells // Prog. Exp. Tumor Res. - 1978. -Vol. 22. - P. 190-274.
  • Mishra Р., Chan D.C. Metabolie regulation of mitochondrial dynamics // J. Cell Biol. - 2016. - № 12. -P. 379-387.
  • Wallace D.C. Mitochondria and cancer: Warburg addressed // Cold Spring Harb Symp Quant Biol. - 2005. -Vol. 70. - P. 363-374.
  • Ishikawa K et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis // Science. - 2008. - Vol. 320 (5876). - P. 661-664.
  • Wang Y., Xia Y., Lu Z. Metabolic features of cancer cells // Cancer Commun. - 2018. - Vol. 38 (1). - P. 65. -URL:http://www.cancercommun.biomedcentral.com/articles/
  • DOI: 10.1186/s40880-018-0335-7
  • Roth K.G., Mambetsariev I., Kulkarni P., Salgia R. The mitochondrion as an emerging therapeutic target in cancer // Trends Mol Med. - 2019. - № 26 (1 ). - P. 119-134.
  • Khutornenko A.A. et al. Pyrimidine biosynthesis links mitochondrial respiration to the p53 pathway // Proc Natl Acad Sei USA. - 2010. - № 107 (29). - P. 12828-33.
  • Dong L.F. et al. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells // Cancer Commun. - 2019. - P. 39-63. - URL: http://www.cancercommun.biomedcentral.com/track/pdf/
  • DOI: 10.1186/s40880-019-0412-6
  • Tan A.S. et al. Mitochondrial genome acquisition restores respiratory function and tumorogenic potential of cancer cells without mitochondrial DNA // Cell Metab. - 2015. - № 21 (1 ). - P. 81 -94.
  • Hu Y.L. et al. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma // Cancer Res. - 2012. - Vol. 72. - P. 1773-1783.
  • Kulikov V.A., Belyaeva L.E. Metabolicheskoe pereprogrammirovanie rakovy'x kletok // Vestnik Vitebskogo gosudarstvennogo medicinskogo universiteta. - 2013. - № 2. - Tom 12. - C. 6-12.
  • Dang C.V., Kim J.W., Gao P., Yustein J. The interplay between MYC and HIF in cancer// Nat. Rev. Cancer. -2008. - Vol. 8. - P. 51-56.
  • Kulikov V.A. Signal'nye kaskady, onkogeny, genyonkosupressory i metabolizm rakovoj kletki // Vestn. VGMU. - 2014. - T. 13, № 5. - S. 6-15.
  • Kumykova Z.Yu. Rot gena r53 i kodiruemogo im belka v kancerogeneze cheloveka i zhivotnyh // Vestnik magistratury. - 2014.- № 5-1 (32). - S. 18-20.
  • Bell E.L., Emerlin, B.M., Ricoul S.J., Guarente L. SirT3 suppresses hypoxia inducible factor 1a and tumor growth by inhibiting mitochondrial ROS production. // Oncogene. - 2011. - Vol. 30. - P. 2986-2996.
  • Chen W. et al. Tumor protein translationally controlled 1 is a p53 target gene that promotes cell survival // Cell Cycle. - 2013. - Vol. 12. - № 14. - P. 617-633.
  • Martinou J.C., Youle R.J. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics // Dev. Cell. - 2011. - № 21. - P. 92-101.
  • Tan Z. et al. The Role of PGC1a in Cancer Metabolism and its Therapeutic Implications // Mol. Cancer Ther. - 2016. - Vol. 15. - P. 774-782.
  • La Gory E.L. et al. Suppression of PGC-1a Is Critical for Reprogramming Oxidative Metabolism in Renal Cell Carcinoma // Cell Rep. - 2015. - № 12. - P. 116-127.
  • Lamb R. et al. Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition // Oncotarget. - 2014. - Vol. 5. - P. 11029-11037.
  • De Luca, A. et al. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells // Oncotarget. - 2015. - Vol. 6. - P. 14777-14795.
  • Le Bleu V.S. et al. Pgc-1 alpha Mediates Mitochondrial Biogenesis and Oxidative Phosphorylation in Cancer Cells to Promote Metastasis // Nat. Cell. Biol. - 2016. - Vol. 16. - P. 992-1003, 1001-1015.
  • Lee J.V. et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation // Cell Metab. - 2014. - Vol. 20. - P. 306-319.
  • Morita M. et al. mTOR coordinates protein synthesis, mitochondrial activity and proliferation // Cell Cycle. - 2015. - Vol. 14. - P. 473-480.
  • Sancho P. et al. MYC/PGC-1a Balance Determines the Metabolic Phenotype and Plasticity of Pancreatic Cancer Stem Cells // Cell Metab. - 2015. - Vol. 22. - P. 590-605.
  • Guo J.Y. et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis // Genes Dev. - 2013. - Vol. 27. - P. 1461-1463.
  • Hu Y.L. et al. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma // Cancer Res. - 2012. - Vol. 72. - P. 1773-1783.
  • Mandas J.D., Kimmelman А.С. Mechanisms of Selective Autophagy in Normal Physiology and Cancer // J. Mol. Biol. - 2016. - Vol. 428. - P. 1659-1680.
  • Chourasia A.H., Boland M.L., Macleod K.F. Mitophagy and cancer // Cancer Metab. - 2014. - № 6. -P. 329-339.
  • Ortega A.D. et al. Glucose avidity of carcinomas // Cancer Lett. - 2009. - Vol. 276. - № 2. - P. 125-135.
  • Ju Y.S. et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. // eLife. - 2014. - № 3. - P. 2-28.
  • Porporato P.E. et al. A mitochondrial switch promotes tumor metastasis // Cell Rep. - 2014. - Vol. 8. -P. 754-766.
  • Cui Q., Wen S., Huang P. Targeting cancer cell mitochondria as a therapeutic approach: recent updates // Future Med Chem. - 2017. - Vol. 9 (9). - P. 929-949.
  • Kalyanaraman B. et al. A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: therapeutic targeting of tumor mitochondria with lipophilic cationic compounds // Redox Biol. - 2018. - Vol. 14. - P. 316-327.
  • Ghosh J.C. et al. Adaptive mitochondrial reprogramming and resistance to PI3K therapy // J. Natl. Cancer Inst.-2015.-Vol. 107 (3).
  • Du X., Zhang P., Fu H., Ahsan H.M., Gao J., Chen Q. Smart mitochondrial-targeted cancer therapy: subcellular distribution, selective TrxR2 inhibition accompany with declined antioxidant capacity // Int J Pharm. - 2019. -Vol. 555. - P. 346-355.
  • Lei Y. et al. Metformin targets multiple signaling pathways in cancer // Chin J Cancer. - 2017. - Vol. 6 (1). -P. 17.
  • The 150 most important questions in cancer research and clinical oncology series: questions 94-101: edited by Cancer Communications // Cancer Commun. - 2018. - Vol. 38 (1 ). - P. 69.
  • Cheng G. et al. Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death // Cancer Res. - 2012. - Vol. 72 (10). - P. 2634-2644.
  • Vyas, S., and Chang, P. New PARP targets for cancer therapy // Nat. Rev. Cancer. - 2014. - Vol. 14. -P. 502-509.
  • Dong L. Neuzil J. Targeting mitochondria as an anticancer strategy // Cancer Communications. - 2019. -Vol. 39. - P. 63.
Еще
Статья обзорная