Модели влияния водорода на механические свойства металлов и сплавов

Автор: Яковлев Ю.А., Полянский В.А., Седова Ю.С., Беляев А.К.

Журнал: Вестник Пермского национального исследовательского политехнического университета. Механика @vestnik-pnrpu-mechanics

Статья в выпуске: 3, 2020 года.

Бесплатный доступ

В статье представлен обзор основных моделей механики, которые используются для описания эффектов водородной хрупкости, водородного растрескивания и индуцированного водородом разрушения. Основное внимание уделено моделям, которые применяются для расчета напряженнодеформированного состояния металлических образцов, деталей и узлов машин и имеют потенциал для конкретных инженерных приложений. С механической точки зрения влияние водорода на свойства материалов представляет собой классическую задачу о влиянии малого параметра, так как критические для прочности и пластичности металлов концентрации водорода, как правило, невелики. Подавляющая часть моделей сводит это влияние к перераспределению водорода внутри объема металла и локализации его концентраций в критических зонах разрушения. Авторами выделено четыре основных подхода, которые позволяют учесть влияние малого параметра: усиленная водородом декогезия (HEDE), усиленная водородом локализованная пластичность(HELP), учет дополнительного внутреннего давления, которое создает растворенный в металлах водород, и би-континуальный подход, который учитывает внутреннее давление водорода и ослабление материала в рамках единой модели сплошной среды. Установлены связи между основными подходами. Проведена систематизация публикаций, выделены сходства и различия в описании внутреннего переноса и накопления водорода в металлах. Указано, что самое большое количество публикаций посвящено HEDE-модели, вместе с тем нет опубликованных данных о применении этой модели к реальным задачам инженерной практики, рассматривались только задачи о моделировании результатов механических испытаний цилиндрических и призматиче- ских образцов, с этой точки зрения другие, менее популярные подходы имеют больше практических применений. Основным нерешенным вопросом при верификации всех моделей остается локальная концентрация водорода, которая является источником преждевременного разрушения металлов под нагрузкой. Все методы измерения локальных концентраций являются косвенными. Даже в случае применения тонких физических методов требуется механическая подготовка поверхности, во время которой сохранить естественную, исходную концентрацию водорода невозможно. Отсутствие достоверных данных о распределении концентрации водорода не дает возможности однозначно определить все параметры моделей, что, с одной стороны, позволяет осуществить подгонку к любым экспериментальным данным, с другой - снижает прогностическую инженерную ценность всех моделей, так как при инженерном расчете на прочность недостаточно только качественного соответствия.

Еще

Водородная хрупкость, декогезия, локализованная пластичность, би-континуальная сплошная среда, транспорт водорода, малый параметр, разрушение

Короткий адрес: https://sciup.org/146282000

IDR: 146282000   |   DOI: 10.15593/perm.mech/2020.3.13

Список литературы Модели влияния водорода на механические свойства металлов и сплавов

  • Fremy M.E. // Comptes Rendus. – 1861. – Vol. 52. – Р. 323.
  • Johnson W.H. II. On some remarkable changes produced in iron and steel by the action of hydrogen and acids // Proceedings of the Royal Society of London. – 1875. – Vol. 23, no. 156–163 – P. 168–179.
  • Gesner G.W. U.S. Patent No. 657,426, 1898.
  • Andrew T., Bellis T.K. U.S. Patent No. 695,264, 1902.
  • Bontempi A. U.S. Patent No. 835,495, 1906.
  • Kinzel A.B. U.S. Patent No. 1,888,132, 1932.
  • Richardson O.W., Nicol J., Parnell T.I. The diffusion of hydrogen through hot platinum // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. – 1904. – Vol. 8, no. 43. – P. 1–29.
  • Andrew J.H. A few suggestions on the theories of occlusion of gases by metals // Transactions of the Faraday Society. – 1919. – Vol. 14. – P. 232–239.
  • Parr S.W., Straub F.G. Embrittlement of Boiler Platel // Industrial & Engineering Chemistry. – 1927. – Vol. 19, no. 5. – P. 620–622. Hultgren A. Flakes or Hair-Cracks in Chromium Steel, with a Discussion of Shattered Zones and Transverse Fissures in Rails // Journal of the Iron and Steel Institute. – 1925. – Vol. 111. – P. 113.
  • Keiichi Ota On the importance of hydrogen-brittleness as a defect in steel qualities // Tetsu-to-Hagane. – 1938. – Vol. 24, no. 11. – P. 1005–1013.
  • Zapffe C.A., Sims C.E. Hydrogen embrittlement, internal stress and defects in steel // Trans. AIME. – 1941. – Vol. 145. – P. 225–271.
  • Jordan L., Eckman J.R. Determination of Oxygen and Hydrogen in Metals by Fusion in Vacuum // Industrial & Engineering Chemistry. – 1926. – Vol. 18, no. 3. – P. 279–282.
  • Brown W.D. "Apparatus for determining hydrogen in steel." U.S. Patent No. 2,387,878. 30 Oct. 1945.
  • Scafe R.M. Determination of Hydrogen in Steel Sampling and Analysis by Vacuum Extraction // Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers. – 1945. – Vol. 162. – P. 375.
  • О благоприятном влиянии водорода на технологическую пластичность титановых сплавов / Б.А. Колачев [и др.] // Технология легких сплавов. – 1974. – № 7. – С. 32.
  • Колачев Б.А., Носов В.К. Водородное пластифицирование и сверхпластичность титановых сплавов // Физика металлов и металловедение. – 1984. – Т. 57, № 2. – С. 288–297.
  • Feng X.Q., Huang Y. Mechanics of smart-cut® technology // International Journal of Solids and Structures. – 2004. – Vol. 41, no. 16–17. – P. 4299–4320.
  • "Smart cut": a promising new SOI material technology / M. Bruel [et al.] // IEEE International SOI Conference Proceedings. – 1995. – P. 178–179.
  • Silicon carbide on insulator formation using the Smart Cut process / L. Di Cioccio [et al.] // Electronics Letters. – 1996. – Vol. 32, no. 12. – P. 1144–1145.
  • Колачев Б.А. Водородная хрупкость металлов. – М.: Металлургия, 1985. – 216 с.
  • Fick A. Ueber diffusion // Annalen der Physik. – 1855. – Vol. 170, no. 1. – P. 59–86.
  • Arrhenius S.A. Über die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte // Z. Phys. Chem. – 1889. – Vol. 4, no. 1. – P. 96–116.
  • Gorsky W.S. Theorie der elastischen Nachwirkung in ungeordneten Mischkristallen (elastische Nachwirkung zweiter Art) // Physikalische Zeitschrift der Sowjetunion. – 1935. – Vol. 8. – P. 457–471.
  • Darken L.S., Smith R.P. Behavior of Hydrogen in Steel During and After Immersion in Acid // Corrosion. – 1949. – Vol. 5, no. 1. – P. 1–16.
  • McNabb A., Foster P.K. A new analysis of the diffusion of hydrogen in iron and ferritic steels // Trans. AIME. – 1963. – Vol. 227. – P. 618–627.
  • Pressouyre G.M. A classification of hydrogen traps in steel // Metallurgical Transactions A. – 1979. – Vol. 10, no. 10. – P. 1571–1573.
  • Pressouyre G.M. Hydrogen traps, repellers, and obstacles in steel; Consequences on hydrogen diffusion, solubility, and embrittlement // Metallurgical Transactions A. – 1983. – Vol. 14, no. 10. – P. 2189–2193.
  • Lecoester F., Chene J., Noel D. Hydrogen embrittlement of the Ni-base Alloy 600 correlated with hydrogen transport by dislocations // Materials Science and Engineering: A. – 1999. – Vol. 262, no. 1–2. – P. 173–183.
  • Hirth J.P. Effects of hydrogen on the properties of iron and steel // Metallurgical Transactions A. – 1980. – Vol. 11, no. 6. – P. 861–890.
  • Oriani R.A. The diffusion and trapping of hydrogen in steel // Acta Metallurgica. – 1970. – Vol. 18, no. 1. – P. 147–157.
  • Zaika Y.V., Bormatova E.P. Parametric identification of hydrogen permeability model by delay times and conjugate equations // International Journal of Hydrogen Energy. – 2011. – Vol. 36, no. 1. – P. 1295–1305.
  • Zaika Y.V., Kostikova E.K. Computer simulation of hydrogen thermodesorption // Advances in Materials Science and Applications. – 2014. – Vol. 3, no. 3. – P. 120–129.
  • Numerical modeling of thermal desorption mass spectroscopy (TDS) for the study of hydrogen diffusion and trapping interactions in metals / C. Hurley, F. Martin, L. Marchetti, J. Chene, C. Blanc, E. Andrieu // International Journal of Hydrogen Energy. – 2015. – Vol. 40, no. 8. – P. 3402–3414.
  • Kirchheim R. Hydrogen solubility and diffusivity in defective and amorphous metals // Progress in Materials Science. – 1988. – Vol. 32, no. 4. – P. 261–325.
  • Shewmon P.G. Diffusion in solids. – N. Y.: Mc Graw- Hill Book Co, Inc., 1963. – 200 p.
  • Serebrinsky S., Carter E.A., Ortiz M. A quantummechanically informed continuum model of hydrogen embrittlement // Journal of the Mechanics and Physics of Solids. – 2004. – Vol. 52, no. 10. – P. 2403–2430.
  • Polyanskiy A.M., Polyanskiy V.A., Yakovlev Yu.A. Experimental determination of parameters of multichannel hydrogen diffusion in solid probe // Int. J. of Hydrogen Energy. – 2014. – Vol. 39, no. 30. – P. 17381–17390.
  • Григорьев И.С. Физические величины: справочник. – М.: Энергоатомиздат, 1991. – 1232 с.
  • Гельд П.В., Рябов Р.А., Мохрачева Л.П. Водород и физические свойства металлов и сплавов. – М.: Наука. – 1985. – 230 с.
  • Hall E.O. The Deformation and Ageing of Mild Steel: III Discussion of Results // Proceedings of the Physical Society. Section B. – 1951. – Vol. 64, no. 9. – P. 747–753.
  • The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion / M.B. Djukic [et al.] // Engineering Fracture Mechanics. – 2019. – Vol. 216. – P. 106528.
  • Jemblie L., Olden V., Akselsen O.M. A review of cohesive zone modelling as an approach for numerically assessing hydrogen embrittlement of steel structures // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. – 2017. – Vol. 375, no. 2098. – P. 20160411.
  • Troiano A.R. The role of hydrogen and other interstitials in the mechanical behavior of metals // Trans. ASM. – 1960. – Vol. 52. – P. 54–80.
  • Oriani R.A. A mechanistic theory of hydrogen embrittlement of steels // Berichte der Bunsengesellschaft für physikalische Chemie. – 1972. – Vol. 76, no. 8. – P. 848–857.
  • Oriani R.A., Josephic P.H. Equilibrium aspects of hydrogen- induced cracking of steels // Acta metallurgica. – 1974. – Vol. 22, no. 9. – P. 1065–1074.
  • Specimen thickness effect on the property of hydrogen embrittlement in single edge notch tension testing of high strength pipeline steel / Y. Li [et al.] // International Journal of Hydrogen Energy. – 2018. – Vol. 43, 32. – P. 15575–15585.
  • Gerberich W.W., Marsh P.G., Hoehn J.W. Hydrogen induced cracking mechanisms-are there critical experiments? // Proceedings of the 1994 5th International Conference on the Effect of Hydrogen on the Behavior of Materials. – Minerals, Metals & Materials Soc (TMS), 1996. – P. 539–551.
  • Olden V., Alvaro A., Akselsen O.M. Hydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint–Experiments and FE simulations // International journal of hydrogen energy. – 2012. – Vol. 37, no. 15. – P. 11474–11486.
  • Elmukashfi E., Tarleton E., Cocks A.C.F. A modelling framework for coupled hydrogen diffusion and mechanical behaviour of engineering components // Computational Mechanics. – 2020. – P. 1–32.
  • Cohesive zone modelling of hydrogen induced cracking on the interface of clad steel pipes / L. Jemblie [et al.] // Interna tional Journal of Hydrogen Energy. – 2017. – Vol. 42, no. 47. – P. 28622–28634.
  • Díaz A., Alegre J.M., Cuesta I.I. Numerical simulation of hydrogen embrittlement and local triaxiality effects in notched specimens // Theoretical and Applied Fracture Mechanics. – 2017. – Vol. 90. – P. 294–302.
  • Chan K.S., Moody J. A Hydrogen-Induced Decohesion Model for Treating Cold Dwell Fatigue in Titanium-Based Alloys // Metallurgical and Materials Transactions A. – 2016. – Vol. 47, 5. – P. 2058–2072.
  • A phase-field model for solute-assisted brittle fracture in elastic-plastic solids / F.P. Duda [et al.] // International Journal of Plasticity. – 2018. – Vol. 102. – P. 16–40.
  • Scheider I., Pfuff M., Dietzel W. Simulation of hydrogen assisted stress corrosion cracking using the cohesive model // Engineering Fracture Mechanics. – 2008. – Vol. 75, no. 15. – P. 4283–4291.
  • Rimoli J.J., Ortiz M. A three-dimensional multiscale model of intergranular hydrogen-assisted cracking // Philosophical Magazine. – 2010. – Vol. 90, no. 21. – P. 2939–2963.
  • Olden V., Thaulow C., Johnsen R. Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels // Materials & design. – 2008. – Vol. 29, no. 10. – P. 1934–1948.
  • Modelling of stress-corrosion cracking by using peridynamics / D. De Meo [et al.] // International Journal of Hydrogen Energy. – 2016. – Vol. 41, no. 15. – P. 6593–6609.
  • Prediction on Initiation of Hydrogen-Induced Delayed Cracking in High-Strength Steel Based on Cohesive Zone Modeling / Y. Wang [et al.] // ASME 2014 Pressure Vessels and Piping Conference. – 2014. – Vol. 6B.
  • Multi-scale simulation of hydrogen influenced critical stress intensity in high Co–Ni secondary hardening steel / C. Wang [et al.] // Materials & Design. – 2015. – Vol. 87. – P. 501–506.
  • Failure analysis of pre‐stressed high strength steel bars used in a wind turbine foundation: Experimental and FE simulation / Y.F. Wang [et al.] // Materials and Corrosion. – 2016. – Vol. 67, no. 4. – P. 406–419.
  • A cohesive zone model to simulate fatigue crack propagation under high pressure gaseous hydrogen / G. Bilotta [et al.] // Advanced Materials Research. – 2014. – Vol. 891. – P. 765–770.
  • Sun Z., Benabou L. Modélisation de la fragilisation dynamique d'un matériau polycristallin sous traction monotone. 11e colloque national en calcul des structures, CSMA, May 2013, Giens, France. 􀛦hal-01717064􀛧
  • Wu J.Y., Mandal T.K., Nguyen V.P. A phase-field regularized cohesive zone model for hydrogen assisted cracking // Computer Methods in Applied Mechanics and Engineering. – 2020. – Vol. 358. – P. 112614.
  • A cohesive zone model to simulate the hydrogen embrittlement effect on a high-strength steel / G. Gobbi [et al.] // Frattura ed Integrità Strutturale. – 2016. – Vol. 10, no. 35. – P. 260–270.
  • Alvaro A., Olden V., Akselsen O.M. 3D cohesive modelling of hydrogen embrittlement in the heat affected zone of an X70 pipeline steel // International journal of hydrogen energy. – 2013. – Vol. 38, no. 18. – P. 7539–7549.
  • Alvaro A., Olden V., Akselsen O.M. 3D cohesive modelling of hydrogen embrittlement in the heat affected zone of an X70 pipeline steel–Part II // International Journal of Hydrogen Energy. – 2014. – Vol. 39, no. 7. – P. 3528–3541.
  • Application of hydrogen influenced cohesive laws in the prediction of hydrogen induced stress cracking in 25% Cr duplex stainless steel / V. Olden [et al.] // Engineering Fracture Mechanics. – 2008. – Vol. 75, no. 8. – P. 2333–2351.
  • Hydrogen-enhanced fatigue crack growth behaviors in a ferritic Fe-3wt% Si steel studied by fractography and dislocation structure analysis / D. Wan [et al.] // International Journal of Hydrogen Energy. – 2019. – Vol. 44, no. 10. – P. 5030–5042.
  • Martínez-Pañeda E., Golahmar A., Niordson C.F. A phase field formulation for hydrogen assisted cracking // Computer Methods in Applied Mechanics and Engineering. – 2018. – Vol. 342. – P. 742–761.
  • On the suitability of slow strain rate tensile testing for assessing hydrogen embrittlement susceptibility / E. Martínez- Pañeda [et al.] // Corrosion Science. – 2020. – Vol. 163. – P. 108291.
  • Influence of hydrogen from cathodic protection on the fracture susceptibility of 25% Cr duplex stainless steel–Constant load SENT testing and FE-modelling using hydrogen influenced cohesive zone elements / V. Olden [et al.] // Engineering Fracture Mechanics. – 2009. – Vol. 76, no. 7. – P. 827–844.
  • Multi-scale simulation of hydrogen influenced critical stress intensity in high Co–Ni secondary hardening steel / C. Wang [et al.] // Materials & Design. – 2015. – Vol. 87. – P. 501–506.
  • A uniform hydrogen degradation law for high strength steels / H. Yu [et al.] // Engineering Fracture Mechanics. – 2016. – Vol. 157. – P. 56–71.
  • Vergani L., Gobbi G., Colombo C. A numerical model to study the hydrogen embrittlement effect on low-alloy steels // Key Engineering Materials. – 2014. – Vol. 577. – P. 513–516.
  • Cohesive zone modeling of hydrogen-induced delayed intergranular fracture in high strength steels / W. Wu [et al.] // Results in Physics. – 2018. – Vol. 11. – P. 591–598.
  • Influence of hydrogen from CP On the fracture susceptibility of 25% Cr duplex stainless steel-FE modeling of constant load testing using hydrogen influenced cohesive zone elements / V. Olden [et al.] // The Eighteenth International Offshore and Polar Engineering Conference. – 2008.
  • Olden V., Alvaro A., Akselsen O.M. Hydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint–Experiments and FE simulations // International journal of hydrogen energy. – 2012. – Vol. 37, no. 15. – P. 11474–11486.
  • Prediction of hydrogen embrittlement in 25% Cr duplex stainless steel based on cohesive zone simulation / V. Olden [et al.] // ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. – 2009. – P. 209–218.
  • Olden V., Akselsen O.M. FE Simulation of Cold Cracking Susceptibility in X70 Structural Steel Welded Joints // ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. – 2011. – P. 445–454.
  • Moriconi C., Hénaff G., Halm D. Cohesive zone modeling of fatigue crack propagation assisted by gaseous hydrogen in metals //International journal of fatigue. – 2014. – Vol. 68. – P. 56–66.
  • The role of plasticity and hydrogen flux in the fracture of a tempered martensitic steel: A new design of mechanical test until fracture to separate the influence of mobile from deeply trapped hydrogen / D. Guedes [et al.] // Acta Materialia. – 2020. – Vol. 186. – P. 133–148.
  • Del Busto S., Betegón C., Martínez-Pañeda E. A cohesive zone framework for environmentally assisted fatigue // Engineering Fracture Mechanics. – 2017. – Vol. 185. – P. 210–226.
  • Benabou L. Coupled stress-diffusion modelling of grain boundary segregation and dynamic embrittlement in a copper alloy // Modelling and Simulation in Materials Science and Engineering. – 2019. – Vol. 27, no. 4. – P. 045007.
  • Anand L., Mao Y., Talamini B. On modeling fracture of ferritic steels due to hydrogen embrittlement // Journal of the Mechanics and Physics of Solids. – 2019. – Vol. 122. – P. 280–314.
  • A fully coupled implementation of hydrogen embrittlement in FE analysis / G. Gobbi [et al.] // Advances in Engineering Software. – 2019. – Vol. 135. – pp. 102673.
  • Gobbi G., Colombo C., Vergani L. Sensitivity analysis of a 2D cohesive model for hydrogen embrittlement of AISI 4130 // Engineering Fracture Mechanics. – 2016. – Vol. 167. – P. 101–111.
  • Tarleton E. Incorporating hydrogen in mesoscale models // Computational Materials Science. – 2019. – Vol. 163. – P. 282–289.
  • Taha A., Sofronis P. A micromechanics approach to the study of hydrogen transport and embrittlement // Eng Fract Mech. – 2001. – Vol. 68. – P. 803–837.
  • Sofronis P., McMeeking R. Numerical analysis of hydrogen transport near a blunting crack tip // Journal of the Mechanics and Physics of Solids. – 1989. – Vol. 37, no. 3. – P. 317–350.
  • A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel / P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie // J Mech Phys Solids. – 2010. – Vol. 58, no. 2. – P. 206–226.
  • Sofronis P., Liang Y., Aravas N. Hydrogen induced shear localization of the plastic flow in metals and alloys // European Journal of Mechanics – A/Solids. – 2001. – Vol. 20. – P. 857–872.
  • Hydrogen Embrittlement in Fe3% Si, Visited by Nanomechanical Testing and Cohesive Zone Simulation / V. Olden [et al.] // International Hydrogen Conference (IHC 2016): Materials Performance in Hydrogen Environments. – ASME Press, 2017. – 800 p.
  • McLean D. Grain boundaries in metals. – GB.: Clarendon Press, 1957. – 346 p.
  • Van der Ven A., Ceder G. Impurity induced van der Waals transition during decohesion // Phys. Review B. – 2003. – Vol. 67. – P. 060101.
  • Benedetti I., Gulizzi V., Milazzo A. Grain-boundary modelling of hydrogen assisted intergranular stress corrosion cracking // Mechanics of Materials. – 2018. – Vol. 117. – P. 137–151.
  • Wang X., Benabou L. First-principles investigation of intergranular fracture in copper by grain boundary segregation of sulfur // Journal of Engineering Materials and Technology. – 2018. – Vol. 140, no. 1.
  • Needleman A. A Continuum Model for Void Nucleation by Inclusion Debonding // Appl. Mech. ASME. – 1987. – Vol. 54, no. 3. – P. 525–531.
  • Cohesive zone modeling of hydrogen-induced stress cracking in 25% Cr duplex stainless steel / V. Olden, C. Thaulow, R. Johnsen, E. Otby // Scripta Mater. – 2007. – Vol. 57. – P. 615–618.
  • Nguyen O., Ortiz M. Coarse-graining and renormalization of atomistic binding relations and universal macroscopic cohesive behavior // Journal of the Mechanics and Physics of Solids. – 2002. – Vol. 50, no. 8. – P. 1727–1741.
  • 100. Olden V., Thaulow C., Johnsen R. Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels // Materials & design. – 2008. – Vol. 29, no. 10. – P. 1934–1948.
  • 101. Jothi S., Croft T.N., Brown S.G.R. Multiscale multiphysics model for hydrogen embrittlement in polycrystalline nickel // Journal of Alloys and Compounds. – 2015. – Vol. 645. – P. S500–S504.
  • 102. Y.F. Wang [et al.] Effect of Strain Induced α′ Martensite on Concentration of Hydrogen Around a Crack Tip in Austenitic Stainless Steels: FE Simulation // Procedia Engineering. – 2015. – Vol. 130. – P. 746–753.
  • 103. Charles Y., Nguyen H.T., Gaspérini M. FE simulation of the influence of plastic strain on hydrogen distribution during an U-bend test // International Journal of Mechanical Sciences. – 2017. – Vol. 120. – P. 214–224.
  • 104. Birnbaum H.K., Sofronis P. Hydrogen-enhanced localized plasticity – a mechanism for hydrogen-related fracture // Mater. Sci. Eng. A. – 1994. – Vol. 176, no. 1–2. – P. 191–202.
  • 105. Sofronis P., Birnbaum H.K. Mechanics of the hydrogendislocation- impurity interactions I. Increasing shear modulus // J. Mech. Phys. Solid. – 1995. – Vol. 43, no. 1. – P. 49–90.
  • 106. Beachem C.D. A new model for hydrogen-assisted cracking (hydrogen ‘embrittlement’) // Metall. Trans. – 1972. – Vol. 3, no. 2. – P. 437–451.
  • 107. Robertson I.M., Birnbaum H.K. An HVEM study of hydrogen effects on the deformation and fracture of nickel // Acta Metall. – 1986. – Vol. 34, no. 3. – P. 353–366.
  • 108. Bond G.M., Robertson I.M., Birnbaum H.K. The influence of hydrogen on deformation and fracture processes in highstrength aluminum alloys // Acta Metall. – 1978. – Vol. 35, no. 9. – P. 2289–2296.
  • 109. Hydrogen embrittlement and grain boundary fracture / I.M. Robertson, T. Tabata, W. Wei, F. Heubaum, H.K. Birnbaum // Scripta Metall. – 1984. – Vol. 18, no. 8. – P. 841–846.
  • 110. Ferreira P.J., Robertson I.M., Birnbaum H.K. Hydrogen effects on the interaction between dislocations, Acta Mater. – 1998. – Vol. 46, no. 5. – P. 1749–1757.
  • 111. Ferreira P.J., Robertson I.M., Birnbaum H.K. Hydrogen effects on the character of dislocations in high-purity aluminum // Acta Mater. – 1999. – Vol. 47, no. 10. – P. 2991–2998.
  • 112. Liang Y., Sofronis P., Aravas N. On the effect of hydrogen on plastic instabilities in metals // Acta Materialia. – 2003. – Vol. 51, no. 9. – P. 2717–2730.
  • 113. Sobotka J.C., Dodds Jr R.H., Sofronis P. Effects of hydrogen on steady, ductile crack growth: Computational studies // International Journal of Solids and Structures. – 2009. – Vol. 46, no. 22–23. – P. 4095–4106.
  • 114. Ahn D.C., Sofronis P., Dodds Jr R.H. On hydrogeninduced plastic flow localization during void growth and coalescence // International Journal of Hydrogen Energy. – 2007. – Vol. 32, no. 16. – P. 3734–3742.
  • 115. Finite element simulation of hydrogen transport during plastic bulging of iron submitted to gaseous hydrogen pressure / Y. Charles [et al.] // Engineering Fracture Mechanics. – 2019. – Vol. 218. – P. 106580.
  • 116. Kumnick A.J., Johnson H.H. Deep trapping states for hydrogen in deformed iron // Acta Metallurgica. – 1980. – Vol. 28, no. 1. – P. 33–39.
  • 117. Adaptation of hydrogen transport models at the polycrystal scale and application to the U-bend test / Y. Charles [et al.] // Procedia Structural Integrity. – 2018. – Vol. 13. – P. 896–901.
  • 118. Hassan H., Govind K., Hartmaier A. Micromechanical modelling of coupled crystal plasticity and hydrogen diffusion // Philosophical Magazine. – 2019. – Vol. 99, no. 1. – P. 92–115.
  • 119. Numerical Analysis of Hydrogen Transport Using a Hydrogen- Enhanced Localized Plasticity Mechanism / S.K. Kim [et al.] // Proceedings of the World Academy of Science, Engineering and Technology. – 2012. – Vol. 58. – P. 398–401.
  • 120. Yu H., Cocks A., Tarleton E. Discrete dislocation plasticity HELPs understand hydrogen effects in bcc materials // Journal of the Mechanics and Physics of Solids. – 2019. – Vol. 123. – P. 41–60.
  • 121. Yu H., Cocks A.C.F., Tarleton E. Simulating hydrogen in fcc materials with discrete dislocation plasticity // International Journal of Hydrogen Energy. – 2020. – Vol. 45, iss. 28. – P. 14565–14577
  • 122. Katzarov I.H., Pashov D.L., Paxton A.T. Hydrogen embrittlement I. Analysis of hydrogen-enhanced localized plasticity: Effect of hydrogen on the velocity of screw dislocations in α-Fe // Physical Review Materials. – 2017. – Vol. 1, no. 3. – P. 033602.
  • 123. Effects of hydrogen-altered yielding and work hardening on plastic-zone evolution: A finite-element analysis / D. Sasaki [et al.] // International Journal of Hydrogen Energy. – 2015. – Vol. 40, no. 31. – P. 9825–9837.
  • 124. Modelling the effect of hydrogen on ductile tearing resistance of steels: dedicated to Professor Dr. Hermann Riedel on the occasion of his 65th birthday / R. Falkenberg [et al.] // International journal of materials research. – 2010. – Vol. 101, no. 8. – P. 989–996.
  • 125. Liang Y., Sofronis P. Toward a phenomenological description of hydrogen-induced decohesion at particle/matrix interfaces // Journal of the Mechanics and Physics of Solids. – 2003. – Vol. 51, no. 8. – P. 1509–1531.
  • 126. Liang Y., Sofronis P. On hydrogen-induced void nucleation and grain boundary decohesion in nickel-base alloys // J. Eng. Mater. Technol. – 2004. – Vol. 126, no. 4. – P. 368–377.
  • 127. Effect of hydrogen trapping on void growth and coalescence in metals and alloys / Y. Liang [et al.] // Mechanics of Materials. – 2008. – Vol. 40, no. 3. – P. 115–132.
  • 128. Lynch S. Hydrogen embrittlement phenomena and mechanisms // Corrosion Reviews. – 2012. – Vol. 30, no. 3–4. – P. 105–123.
  • 129. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion / M.B. Djukic [et al.] // Engineering Fracture Mechanics. – 2019. – P. 106528.
  • 130. Gerberich W. Modeling hydrogen induced damage mechanisms in metals // Gaseous hydrogen embrittlement of materials in energy technologies. – Woodhead Publishing, 2012. – P. 209–246.
  • 131. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials / M.L. Martin [et al.] // Acta Materialia. – 2019. – Vol. 165. – P. 734–750.
  • 132. Анализ теоретических представлений о механизмах водородного растрескивания металлов и сплавов / Н.Н. Сергеев [и др.] // Известия Юго-Западного государственного университета. – 2017. – Т. 21, № 3. – C. 6–33.
  • 133. Song J., Curtin W.A. A nanoscale mechanism of hydrogen embrittlement in metals // Acta Materialia. – 2011. – Vol. 59, no. 4. – P. 1557–1569.
  • 134. Song J., Curtin W.A. Atomic mechanism and prediction of hydrogen embrittlement in iron // Nature materials. – 2013. – Vol. 12, no. 2. – P. 145–151.
  • 135. Song J., Curtin W.A. Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using α-Fe as a model system // Acta Materialia. – 2014. – Vol. 68. – P. 61–69.
  • 136. Hydrogen–vacancy–dislocation interactions in α-Fe / A. Tehranchi [et al.] // Modelling and Simulation in Materials Science and Engineering. – 2016. – Vol. 25, no. 2. – P. 025001.
  • 137. Song J., Soare M., Curtin W.A. Testing continuum concepts for hydrogen embrittlement in metals using atomistics // Modelling and Simulation in Materials Science and Engineering. – 2010. – Vol.18, no. 4. – P. 045003.
  • 138. Tehranchi A., Curtin W.A. Atomistic study of hydrogen embrittlement of grain boundaries in nickel: I. Fracture // Journal of the Mechanics and Physics of Solids. – 2017. – Vol. 101. – P. 150–165.
  • 139. Tehranchi A., Yin B., Curtin W.A. Softening and hardening of yield stress by hydrogen–solute interactions // Philosophical Magazine. – 2017. – Vol. 97, no. 6. – P. 400–418.
  • 140. Atomistic investigation of the influence of hydrogen on dislocation nucleation during nanoindentation in Ni and Pd / X. Zhou [et al.] // Acta Materialia. – 2016. – Vol. 116. – P. 364–369.
  • 141. Indeitsev D.A., Semenov B.N. About a model of structural-phase transformations under hydrogen influence // Acta Mechanica. – 2008. – Vol. 195, no. 1–4. – P. 295–304.
  • 142. Беляев А.К., Кудинова Н.Р., Полянский В.А., Яковлев Ю.А. Описание деформации и разрушения материалов, содержащих водород с помощью реологической модели // НТВ СПбГПУ. Физико-математические науки НТВ-ФМ. – 2015. – № 3(225). – С. 57–65
  • 143. Benchmark Study of Measurements of Hydrogen Diffusion in Metals / D.G. Arseniev [et al.] // Dynamical Processes in Generalized Continua and Structures. – Springer, Cham, 2019. – P. 37–61.
  • 144. Surface effect of the waves of plastic deformation and hydrogen distribution in metals / A.K. Belyaev [et al.] // 2017 Days on Diffraction (DD). – IEEE, 2017. – P. 45–50.
  • 145. Belyaev A.K., Blekhman I.I., Polyanskiy V.A. Equation for the evolution of trapped hydrogen in an elastic rod subjected to high-frequency harmonic excitation // Acta Mechanica. – 2016. – Vol. 227, no. 5. – P. 1515–1518.
  • 146. Belyaev A.K., Polyanskiy V.A., Yakovlev Y.A. Hydrogen as an indicator of high-cycle fatigue // Procedia IUTAM. – 2015. – Vol. 13. – P. 138–143.
  • 147. Параметрическая неустойчивость при циклическом нагружении как причина разрушения материалов, содержащих водород / А.К. Беляев [и др.] // Изв. РАН. МТТ. – 2012. – № 5. – С. 53–57
  • 148. Belyaev A.K., Polyanskiy V.A., Yakovlev Y.A. Stresses in a pipeline affected by hydrogen // Acta Mechanica. – 2012. – Vol. 223, no. 8. – P. 1611–1619.
  • 149. Индейцев Д.А., Осипова Е.В., Полянский В.А. Статистическая модель индуцированного водородом разрушения металлов // ДАН Физика, Механика. – 2014. – Т. 459, № 3. – С. 294–297.
  • 150. Simulation of the effect of internal pressure on the integrity of hydrogen pre-charged BCC and FCC steels in SSRT test conditions / J.G. Sezgin [et al.] // Engineering Fracture Mechanics. – 2019. – Vol. 216. – P. 106505.
  • 151. An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines / A. Traidia [et al.] // International Journal of Hydrogen Energy. – 2012. – Vol. 37, no. 21. – P. 16214–16230.
  • 152. Carrasco J.P., dos Santos N.C., Silva A.A. Numerical Simulation of the Hydrogen Effect on the Deformations of Test Body Models Loaded Under Tensile Stress // International Journal of Modeling and Simulation for the Petroleum Industry. – 2007. – Vol. 1, no. 1. – P. 55–62.
  • 153. Model of parameters controlling resistance of pipeline steels to hydrogen-induced cracking / A. Traidia [et al.] // Corrosion. – 2014. – Vol. 70, no. 1. – P. 87–94.
  • 154. Спевак Л.Ф., Федотов В.П., Нефедова О.А. Параллельные алгоритмы для анализа прочности наводороженных конструкций // Программные продукты и системы. – 2012. – № 3. – C. 235–239.
  • 155. Бубнов С.А., Овчинников И.Г. Моделирование ползучести и разрушения неравномерно прогретого толстостенного трубопровода в условиях высокотемпературной водородной коррозии // Вестник Самарского государственного технического университета. Серия: Физико-математические науки. – 2011. – № 4 (25). – C. 67–74.
  • 156. Белов А.В. [и др.] К вопросу об использовании различных моделей учета воздействия водородосодержащей среды при расчете несущей способности стальных оболочечных конструкций // Современные проблемы науки и образования. – 2012. – № 6. – C. 101–109.
  • 157. Gao M., Wei R.P. A “hydrogen partitioning” model for hydrogen assisted crack growth // Metallurgical Transactions A. – 1985. – Vol. 16, no. 11. – P. 2039–2050.
  • 158. Varias A.G., Feng J.L., Sui Y.K. Finite element analysis for steady-state hydride-induced fracture in metals by composite model // International Journal of Solids and Structures; 7-8. – 2006. – Vol. 43. – P. 2174–2192
  • 159. Modeling the fatigue crack growth of X100 pipeline steel in gaseous hydrogen / R.L. Amaro [et al.] // International Journal of Fatigue. – 2014. – Vol. 59. – P. 262–271.
  • 160. Длительная прочность стали и сварных соединений трубопроводов под воздействием водорода и напряженного состояния / К.Д. Басиев [и др.] // Экспозиция Нефть Газ. – 2017. – № 1 (54). – C. 42–45.
  • 161. Моделирование водородного охрупчивания трубопровода как тонкостенной цилиндрической оболочки из нелинейно упругого материала / Л.А. Амина [и др.] // Вестник евразийской науки. – 2017. – Т. 9, № 4 (41). – C. 1–16.
Еще
Статья научная