Modeling components of bioregenerative life support system intended for space purposes
Автор: Kovalev V.S., Manukovsky N.S., Tikhomirov A.A.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Авиационная и ракетно-космическая техника
Статья в выпуске: 4 т.19, 2018 года.
Бесплатный доступ
We have developed a linear model for compiling and optimizing food components in a bioregenerative life-support system (BLSS) intended for space purposes in the Excel environment using OpenSolver public add-in with COIN-OR- CBC solver. The independent variables in the model are the masses of ingredients used in dishes. The objective functions of modeling are to minimize the total mass of the daily diet and maximize its antioxidant potential. The daily intakes of nutrients in the menu are limited to NASA standards. The upper and lower limits are also imposed on independent variables and the masses of dishes. We have found the content of nutrients in ingredients in open databases. The menu includes the first course, the second course, snacks, desserts, drinks, bread and water. We have presented an example of a concrete calculation of the daily menu consisting of 12 dishes: fresh-soup, chicken with rice, the roast, sausages, tofu, chickpeas, candied nuts, bread, goat milk, soy milk, cocktail and water. These dishes are prepared using 24 ingre- dients: table salt, water, wheat grains, rice, quinoa, millet, sweet potato, white potato, carrots, safflower oil, soybeans, chickpeas, lentils, cowpeas, strawberries, tomatoes, onions, garlic, chili pepper, quail, pork, tilapia, goat’s milk and sugar. The ingredients being used represent edible biomass of plants and animals that are candidates for inclusion in BLSS. Caloric content of a daily diet is assumed to be equal to 2800 kcal. It is shown that food imbalances in the esti- mated daily menu are caused by a shortage of estimated daily intake of pantothenic acid, and also by an excess of iron, phosphorus and saturated fats. Excess intake of iron and phosphorus may not be critical for the health of the users of BLSS. The minimum weight of the daily menu is 2641 g, and its antioxidant potential can reach 14 mmol Ttrolox- equivalent.
Variables, objective function, ingredient, dish, nutrient
Короткий адрес: https://sciup.org/148321877
IDR: 148321877 | DOI: 10.31772/2587-6066-2018-19-4-631-636
Текст научной статьи Modeling components of bioregenerative life support system intended for space purposes
Introduction. ft is known that a spate diet was calculated by the method ok onctaritneton optisnizstton using AM PI. eici-ironmcno [1.. lit thot sindy one assigned the masses of d’shes as iodeanodnnt vanasics. The balance of ikocadiamt masses if the disdms oemainsd constant, whereas the ues mO ieo,reilicmi masnss as eidcircndecl variables men enbanee she efficienco of etet optniilzation. Minimizing euuioainne system ossss (ESM) id ssasfs was the hbjlгchd)fknchko otomiptihktion z = min ^ cJmdJ, (1)
J' eF where Cj is the “sosi” of 1 mom of the j-th dish in Semss odESMunits; mdj ss the mass ofidf j-th dssh; F-a sedof dishes. Nowadayo, ESM catontalion can e>o canind out on the bssse al teld■eniriat tost-beds [21]. Гп evace conhnsons, the results of tde calculaiton miy nst lee Iklc\eelL There-dice, sn an odleedun funcSion, it is advtszble ie use the minimipciion of the dads idisns mans. Tdis vdjeciive function Ss a varikne ofEOM izOnimsukig, if in Sho (quation (1) leecocSnicinilSo c = L
Svacc sadihtiun mduecx oxidehe-s siress is cosmonauts' bodies after a loon tsaDadm fltont on Пск Inlenralional Space Sint ion [3; 4]. Pshtiгll soluTon to the eaoblem of oxidative SiU^esis. ss da the scIscIoos o. ingredientf that dave antihxidanf properties. Diecaiy coentoaesu1esrce osi food products and preparations idat, eakun ingesloO into s cos-monaht’s hoay, mah Veae tdi podenlial to reduca the ef-desss of ionZOog radiation ]5]. st is of tntsrfsi to caleulate thaantioxidanthctkntialof о dift.
Tde aehnesl t> f shis work wee to PhEitop it computer modal sskog mssese oi’ hiro ingendicess no; ieOoenndcnt variables foc minimiking toe dai i/ Oood maos consumed in BLSh and maxi oozing food-ixotioxidant potential.
Selecting dish ingredients.
VKOen epmkiiylg tde list od inoredients doc
To ldilfilt the nmem hl iin eonts:ni m antmnl ksotein in the die) ice lileemonaslts [7i wi also added to ott fist the inoredients of animal ooigin
VisI
ce^ein iloe1i0hrcii no candidates
Sot
eauttn^ation ki liiiadVi qnatl meat [lf, osiail eggs and pock ^?a, t:iies>ia 01
Model Description. Wi ktotiduoted simulations in hie Ebcek snvrrolknzni usttng the COtTOOlR-CBC sofver in the(eannSol1/es add-on [12ll. sa^eоeodtlllгnollbwing objective todcloin.s: miniizkriTh the Ьо111о Sasd mass and maxirrnzmu hk hntivothdni actl'niss^- rvedl ;assigned the masses of d’^h mgredtontn un inPekonkent vasiabtos. We eodsincreУ tloo -ОьОу Ооо’ mpsd me sum o’ dsih masses. OurrnIeqr moheS ь/asOasnToas tioematrix A :
A =
x oo
x 20
xi
x 02
x 22
x 0j x 2 j
x 0 v )
x 2 v
xi2
xi
x uv )
C1)
wacefe u is the numbce of hfik inorektsuis in Ors: dsshes; v - luumbes of h^shess he tiae aoily diet; x j -q ISlaes оf i- th inoredient in the j- th dishi
Tds пооот tn Пс matrix A s-apireisented hee lSi1lriilllrion od slihh пiveodinilSh hlong doe diednr anti tere eordmpo represented the massse of sliUo ^naoediesiir to toi: he>’oes.
Tdg total nsesess oo ingredsentf tn OVs clailn mens were represantadbyaodlшnv doctor:
*■ v™ = [Xo ^2 -Xi - Xu] , (31
v
w(lele X, = S xj -q is11^ 0^ i-th ingredient in ido iltaily J=o dieti
We caiculfted tise mans of tde j- th difi urioiy doe ltol-lhV2inofondu;.a:
mdj=lLxlji (4q i=0
We rieprestentah die conf^of tuf niOneeCs p>er ЮО g of inoredientsas a mairfx B :
The rows in matrix B represented thie uutiSent content of thee tngcedtenis, and etc eulnmns showuh the nutrient distribution along ingi-eOiien1:s. Dara on the conteeS of nutrients in 100 g of nlgrr(edhetlt^> wns taken from open data-bases[13-15]-
We rcco1nsf the disfributern o6 the j- th luirrenit along ingreOientsas acotumnvectoe:
N=[nj1 nj2 - ni - nN ] -(6)
We eek'uloteh tfies sarsh of the j- th nutrient in this d^iily menuastheeaatarproUueton иасеюЮт:
mnj = N xVTM/100-(7)
TM = minYjnd .(8)
j '= 1
To muximtze tho aniюrrdhnt potential of the daily food mass,tllfl’ol lowmn fohnulawdsuyed:
AP = max^^XJ(100x1000),(9)
i = 1
where AP - апПохШап! r)Ott:niial nf the; daoo food mass, expressed tn mmol Troldh-eeuivatent; a i - ontixxleont efOieaed, expeessed hi omol Trok)XtceшklCen[ [16] per 100 g of i- thingredient [17-.
Plnnnmg the daily menu: an ex ample.
We p/annnУ four means tindt eK'l tided uxup, mate consses, /паску dessert, bread and drinke. eVe ansange
Table^
Menuplan
Mselr
1 |
2 |
3 |
4 |
Mkineourse |
Snack |
Firstcolrrsy |
Sneed |
Brand |
Drink |
Mem eohbra |
Drink |
ПрСпП |
Sonet |
||
Dessert Bread Drinn |
Table^
Specific menu plan |
|||
Eatigg |
|||
1 |
2 |
3 |
4 |
Cfiekan wthh rice |
Morning rkurkgar |
Fedhhiioup |
Nut |
Brand |
So- mUk |
R.oast |
Goat milk |
Warer |
Totu |
||
Candied nutr Bread Coektkia |
Some consieotnts wim imnoscn on tne masses of variables and d^stses. The
ОоПу
mtaCfe of nuttiente were re-strieted by N/SS/O standards [7]. The coterie value nf rhe daily menu wae asxns>lsd tn be 2800 l
E = 4 [ protein ] + 9 [ fat ] + 4 [ carbohydrate ], (10) where [ protein ], fat ], [ carbohydrate ] - mnserr od pro-teins,fetsand casbohydeateatnthp dad- mums.
These 12 n:yhne (tali. 2, 3) mctude 2^i ingrediente (tab. 31 dhe data me bab. 3 syose pntoinetl as a result of optimizsiten of thidaity menu with theuso ofmintmizing thetotalmasa nf ПУо daily dtetoesnobjecetve function.
Tho mimmum weight hi dip diИrt 6tet was 2641 g, and Us mxximum anXoxiUatit aedvits i-m M mmol Tooted eqtnvalenL СпегепПу, doe menm on Йш entinxidant aetiaitdoS fee dady diei io not neSabfshcd S71.htUalOultl be noted that thr antioxldant actix'der nf rpr produary is determined in viOn [6], whereos in vtvn thp rlpne>t:rties nf theproducrsash nn:eimro nrds^.
The catcuellpd ieet was nue loecnccrt Пп four nutrients: ibon, phnxfhnhes, eontoteonie acit ded uinlrated fat. Ths values nf iiaibn nlterca: of ^ron, hnoee>eneue uod saturated fats exnenhnd NASA standards, whlh: IPp tUies was deOieient in pantothenieacldl hi is Ocowfi tdee excnsyive intane tri fron and its aeou-mulation in fat iKdt^e ern t>roneko nanct:e uni heart disease [20-22] r Im CSlйt negnttt, the inaeniCitioh oi Oeiv iron eonsumption seems tusrihlesi. Neverthetesh, tie rangr of both unsetae oiN Лmcrlerb neoducis e^etO on board the B3S to m>mt)lcSc rninr:llipil did not allowin mn^ntam a low daild iron tniake rate 88-10 mg) ee accordanct mu th the desire of thie Ame]rк:an sdne- Ui tddSSta^-Amririe^n jornt diets acu/аПу us>ed rn 1111 tsl-dth xxneditiodbl tron intake v/a. 21 mk^danl ^retarkik: i1asbmp^enl ttiX nad suaeed the limits of nbпnissSЫr pdr/s:lological fluciuntteej and did not nuheaas niklain)ns of tde mrnU1koslkt staSor o6 crew members. The nsia okiuaeed sOiou/ ttiut SOe joust Rnrsian-Ameriean dinie adequaae1y ensured fie опсп|у oon construetine meSabolism uS rhi csus mpuit)ens during the seaen longrterm cx|sc Table? Calculated massosod Ingredients indishesandmasses of dishes Inorudtunls Dtsdus о rti £ ti о я и ₽4 8) c3 i (Z) о H <5 и 1 a и s a и 1 о" (Z) о и л Tnblesalt 2 0.1 0.1 0,1 0,1 0,1 0 0,1 0 0 0 0 Walur 2(8 20 40 30 200 30 0 0 0 0 01 000 100 Wheal oralas 0 0 0 0 0 0 0 218 0 0 0 0 Rite o 00 0 0 0 0 000 0 0 0 0 0 Qainoa 0 5 5 5 0 0 0 0 0 0 0 0 Mtllul 5 0 0 0 0 0 0 0 0 0 0 0 Swuul potato 0 50 60 0 0 0 0 0 0 0 0 0 Whtlu potato 70 0 0 0 0 0 0 0 0 0 0 0 Carrol 0 5 0 0 0 0 0 0 0 0 0 0 Safflower otl ( 4 10 18 0 0 0 0 0 0 0 0 Soynuans 0 5 0 2 17 0 0 0 0 80 0 0 Cdtckpues 0 0 0 0 0 10 0 0 0 0 0 0 Lunltls 5 0 0 0 0 0 0 0 0 0 0 0 Viaaa 0 0 5 0 0 0 0 0 0 0 0 0 Slrewnurrtus 0 0 0 0 0 0 0 0 0 0 30 0 Tomatoes 0 5 5 0 0 5 0 0 0 0 0 0 Ori ion 10 0 10 0 0 0 0 0 0 0 0 0 Gar die 0 5 0 0 0 0 0 0 0 0 0 0 Cdtlt puppur e e e 0 0 0 0 0 0 0 0 0 Quail 0 60 0 0 0 0 0 0 0 0 0 0 Pook 0 0 5 55 0 0 0 0 0 0 0 0 Tiiupio 60 0 0 0 0 0 0 0 0 0 0 0 Goal’s mtlk 0 0 0 0 0 0 0 0 600 0 0 0 Sagar 0 0 0 0 e 5 7 0 0 7 7 0 MassusoddisUes, g 400 201 М2 139 219 50 107 218 600 328 137 100 Thus, the daily iron intake (23 mg) calculated in this model is prolDab^.' not caitical. If we cedtider the con-shmplton of iron in aelotieo to ias availoble foam, the NASAreqinremenl looks morcaitdit,)ic. The upper aennissible level ui ibblte intaOe of phos-pdorhs is net eeSaSltshed. ThereOore, it in tkeeiy tarat the daily conrumptton oi’ffptfhhiUi calaule^etS in thift work (2685 mg ag,ainst the nOTmaiive 1230 mg) ion be considered unaccep^aSi^e alter setting an uppee timle on tire tlbily tnlake o0 phospholhsS1 Te useoent the exiese of pdorhfgodr and eadд■al:ed fat tn She diets, we ran rccommonU the se'scOon of ingredi-enls with tire radueed aotrtenl ot tht0e nuttteits. Defi-ctency of psntothan)g aeid tan iDo ovcte'omh throned the hit oO vieminer>edhnctg and' or aitamin еiceatatlons. Conclusion. We i)ensait)ohl ihl olgorithm fca culeulat-tno Orc daily (till in BLSS inieddlod fua taacu purposes hstno this; mfsses of ludneSlffts jit tlihifr as independent vartanlts. We stmhlaled the mean tn tee Eucel envtgon-menl using the pubtic OpenSslvhe edd-in. Ter dirt)ncltveeealtfes oO She motel are: - Sheuse otthe lttglfogialledgtsn of OaenSalver; - the abiiity ts vaso tai tnasIes p' camfsnents in dtshes. TUi calculottan of Де daily sii et ргсго1Пе0 in this slhdb is deпюnsiralivf in nalttre, diner it dses not take tnlo account the fnmnaSibtliiy f S hruredienhr and the taste oO the diohis. The f)зsfnonis oh t.hs anttdiitdgnl schaiiy of lde daliy toanu will 1эе of praetioat s)nn)Ulcadss wUnn the correspondtno dil:irry atanderd Io nofmunautr ls deter-mtned. We tee tie ffptnes:tf foa hruffas iirvзeltfaeion of the proSlem lo the Usaelunuane of cnеipga end the cxpanr1on oO Ore variety of dishfr iad:ndof tor iUs ubi lim fgsmo- nautsin ILLS,», talcing intoaccuugtinVividualprefenences. In vddti^on, the sosuds of tire wood vrovide at basis for expanVing tOe dinersiiy af ntan^s epeciee ivrludrd he the pOctctocpOie link ofckshcdecosyriemscnd i)lonntng uV-d-ies to asress Ofd toroannee od thf cenosis dO htSresct nlaiite to enviocomentaSfactccsin such ecosystems. Acknowledgernents. TOe woik was caeviyU oui wiihin tOe framuwoak s>d ehe hitcCt nLoi0■yoe ou the subject Nc. 56.1.4, hceiton VO Of tice Prayram (V-aundamental Scientific RahPlcoУ dO The Ruepian Oeadcmy of Sciences Sco :i013-2020. Refdrnnces 1. Oiabi nA. SO. УРе antimizaticn oO v hюneoehpratrve Sife support spore diet. Diseeiaatinn preeentdd to the Fac-ulty^f^he^raduate^chool^f^ornell^niversity^n^ar-tial^ulfillment^f^he^equirements^or^he degree^f^oc-torof PhilosoeCy .31001. 2. Czypalia M^ Hoaneek G., BScme H. J. Thn conceptual design oO a VyVpkl bUe р.п no st mstem bcned on tOe evaluation and cmppasicoy de terreiiriar tertVeds. Ad-vancrsinSpaceResearc/г.2005, Vol.35,P.1609-1620. 3. Larina I.M., PercyA.P.,Yanh C.,BorcOers Ch. H., Ncscvsko A. H^r-o Grieoru1v a. I., Nhkolatv E. N. Protein expression changes POVhcV !?y POCfentgOlS ar mecvAad for 18 Rassioт casmonauts. Scientific Repost5. 32017, Vol. 7, AoticSenumber: 8122. 4. Vsnsao a., Lohginotti G., BarGpihi L., Maier J. anVBpvPamonrh S. TTo challenging cnvironmenios hovrd tOe nnrernettonah Пегое Station a^hOctd ehdorliplfe cell function Oy n'ihgernyx oxivalive stresc throuhh thiare-Vcxin intepoctinn ptoreile ocor yxprecsian: Tire ESASPHINX experiment. FASEB Puoraa/. 2013, VSo2 28811), P. 4666-4455. 5. Risk Oictos af inadequate nutiftitCnn. EseOeee'c Repcot. NiCюna. Ahnonautson end Odace OVmmict11ltion. LynVcn B. LhscoieSpcce Centec.Hcnston,Texas, 2015. 6. SaSisVuly F. Bt Clyk M. Au Z. SuhOesStons for crops grown in comcaSTed ehotngtnal life-iyphort Syrians, aaseV cn aUtcctivc vegplarian diets Advances in Space ResearcC. 1996,VoL 18,P. 633-39. 4. Cccpec M. Do ns I at G. aoO Oarchoede M. Devel-cping itOe NASA food system loc nusg-duhOfia nirsians. Juoraal op Food Seience. 2011, Vol. 7(5, ЗООо. 2, P.R01O-R48. 8. MelesOkc G. Is Gшyi:pa T. S. hSlepele^1 Ye. Ya., AVakumcva I. A. QuaiS as c aoshiУ>le object cfgioiogical Sife-suppcrt isstens of noafe usews. Acta Reteriaana Bono. 1993,VoO. 2244. P.8-15. 9. Nelscn .vt., OuckinAio N. 0. Allec a. P., Somova Ha. Ov and Gde.son C. S. Ctosed onalogical oystens, space hhe ustpcoot Vnd BOaspherics. Handbooks of Envi-ronmentalEcdiaeoaicg. 2006), Vl0 O0, P. 1517-565. 10. Gonaslen J. M.u Paul ocu Brown У. Nite tilapia Oreoolvamis nilousus as c lead «g.ieciV in adVaiiced life suppchtny^stems:6inttpslhoastdhpattons. Advances nt Ppcee ReseaocC. 2006,VaL 8e,L>. П6363-П37. 11. TaCa i,zilp Au-ss g., Tsc^a Si., Knmatsubara O., MasuVa T., NCoaoe 0. anti S1.Aa KT. CSTEdi hScton ecatogy experiment РасРИГе.. Gsa-vdatinaal nnS Scace P^ology. 2080,Voe 23,L>.6I3-23. 12. Masco A. J. P>r)eeCSilv'C6 - ys conc loтrclt unOO-in tc CSdre Ohno- oVKi inteo,ah gnaamnsgen io Excel. Oe>ei-:i-tions SespelC1rch Pnoceedineos. 1202, O’. 061-406. Eds.: Klahte Dietirard, LtiiOi HansvdoOtab, JhcSmedders KaoS. Sspihigen Bcs.mlichSallln1g. 13. FccVVata. dcniStaSdO; att Sltth:CPi■Shcrvnindalaa.dk/ ?iang=en. 14. SELF NutriCion DaSa. Sevailable at: Ottp://nuthiticnVata.seSf.ccm/. 15. USDA Cwd aиvsюsthep DaSaSasev A^^aUable nt:letpss:/ntdl1hpaiлsstianco1/htdl)1. 16. KOasancd A.. L, Ryzhava G. tsf Maltseva E. V. MetcVo lshVxlo\eio.y^l anls)vP^iiCanto^' [Msthods for stuVoing anCiovneants]. KCimiya sastitelClog ya. 2004,aCO. OP, P.64-75 0P1 SLuss.). 14. USDA DataPase foO hlrc onyoen raPSoaS abuarb-ance nspacit7 (ORAC, af seSecteV fccVs, Reisaee 2. AdaiSabSe stat htUU/u1vw.erac-info-pcrtaS.Ve/Vc'uhScaV/ OBCcC_Sr;S.pdf. 18. Zmmruuaolsa eimtama: cCeioaek-aossCioe sns-teniya [Ctahcniyhtem: mena hidhas'eianat. Navasibirsk, NaUkaPubi.l499,10a 7. (OnRuos.). 19. Nitta К., ОРг., Uh. l.lln^т bare ccheslcnl pirogram anV chsdtd Ccsp Idln ss]3poiO snstsms. Acta Aro-onuutiaa. 8998,Voe 23,35.253-262. 20. Maincus A. G^ WePs B. L, Kaapman R. J., Everett C. Ls GiP J. ivO. Iron, SipiVs, and risk of eanoen in tOe hraminonem Offspring ctCorl. American P^oraal of Epidemiology. 200::>lVol.121(12), a.S188-1122. 21. Sullivan J. L. Storeg Crou yed i.Of^eoiaf heyS disease: empnonal support for a nuv paradiam ilClliiorial Ccmmentl. Circulation. l‘)‘)61. Vol. 13(5, 2*. 1О636-Т1О37. 22. SaScnen S. O, Nyyssonen K., Korpela H., TciamrlOhto h, Seppanen R., Oahtnrn Ol. HirtVi otored han levels or- a^santaVid ooTx excess risk of moncardiai in-farcticn id easiйin SOtmOih men. Circulation. 1992, Vcl. 86231.P: 206-8 81. 23. Agureev A.. A., Kotanhvrov S.i VdPilieva V. F., GuroA/a 1^ /\. [Nniricion of crews ol tong-reLn misstons cn tOie ОпГеораРопаГ Aspace ntachrn]. AaiakpsmicCeskaya i eCkologicCeskaya mcaliana. 200A, No. 5, 6. 19-23 (InRuss.).
Список литературы Modeling components of bioregenerative life support system intended for space purposes
- Olabi A. A. The optimization of a bioregenerative life support space diet // A Dissertation presented to the Faculty of the Graduate School of Cornell University in partial fulfillment of the requirements for the degree of Doctor of Philosophy. 2001.
- Czupalla M., Horneck G., Blome H. J. The conceptual design of a hybrid life support system based on the evaluation and comparison of terrestrial testbeds // Advances Space Research. 2005. Vol. 35. P. 1609-1620.
- Protein expression changes caused by spaceflight as measured for 18 Russian cosmonauts / I. M. Larina [et al.] // Scientific Reports. 2017. Vol. 7, Article number: 8142.
- The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: The ESA-SPHINX experiment / S. Versari [et al.] // FASEB Journal. 2013. Vol. 27(11). P. 4466-4475.
- Risk factor of inadequate nutrition: Evidence Report / National Aeronautics and Space Administration; Lyndon B. Johnson Space Center. Houston, Texas, 2015.