Modeling of abiotic synthesis of sugar alcohols (glycol, glycerol and other polyols) as structural units of biological membranes

Автор: Dembitsky V.M., Zanfira V.M., Rozenberg G.S.

Журнал: Самарская Лука: проблемы региональной и глобальной экологии @ssc-sl

Рубрика: Научная жизнь

Статья в выпуске: 4 т.31, 2022 года.

Бесплатный доступ

The assumption that sea water is the cradle of the origin of primitive living organisms is beyond doubt. No one knows how this happened, but there are many assumptions, although the evidence base for all these assumptions raises many questions. This article is an attempt to elucidate the origin of the protomembrane and its transformation into a bilayer lipid membrane in an inanimate substance. Presumably, protomembranes consisting of fatty acids and other amphiphiles were a simple type of membrane, but with the advent of polyols and, accordingly, complex lipids, a new type of protomembranes appears. Perhaps this new type of protomembrane, consisting of complex lipids, was the beginning of the emergence of the future biological membrane and all life on Earth. Coacervates from the Oparin - Haldane hypothesis were used as a model to explain the formation of protomembranes. The chemical model shows which polyols could spontaneously form in the primary broth, and the mathematical model shows that ethylene glycol (40%), glycerol (33%), butane-1,2,3,4-tetraols (17%) account for 90% of all polyols produced. This indicates the possible predominance of diol lipids in the primary primitive protomembranes. During chemical evolution and with changes in temperature, pH, and environmental conditions, diol lipids were replaced by glycerolipids, which have more suitable physicochemical characteristics for the formation of biological membranes of all living organisms. The article presents polyols as part of complex lipids that are found in modern biological membranes.

Еще

Evolution, coacervates, oparin - haldane hypothesis, lipids, protomembranes, polyols

Короткий адрес: https://sciup.org/148327218

IDR: 148327218   |   DOI: 10.24412/2073-1035-2022-10460

Список литературы Modeling of abiotic synthesis of sugar alcohols (glycol, glycerol and other polyols) as structural units of biological membranes

  • Dembitsky, V.M. Ether lipids of the organic world: Formation and biotransformation. In: Fats for the Future. (Cambie, R.Q, Ed). Ellis Harwood Series in Food Science & Technology Van Nostrand Reinhol / Avi, London. 1989. Chapter 12, pp. 173–189.
  • Deamer, D. Origins of life research: The conundrum between laboratory and field simulations of messy environments. Life, 2022. 12 (9), 1429.
  • Misuraca, L.; Caliò, A.; LoRicco, J.G.; Hoffmann, I.; Winter, R.; Demé, B.; Peters, J.; Oger, P.M. Alkanes as membrane regulators of the response of early membranes to extreme temperatures. Life, 2022. 12 (3), 445.
  • Summons, R.E.; Welander, P.V.; Gold, D.A. Lipid biomarkers: molecular tools for illuminating the history of microbial life. Nat. Rev. Microbiol. 2022, 20, 174–185.
  • Dembitsky, V.M. Microbiological aspects of unique, rare, and unusual fatty acids derived from natural amides and their pharmacological profile. Microbiol. Res. 2022, 13 (3), 377–417.
  • Dembitsky, V.M.; Levitsky, D.O. Arsenolipids. Prog. Lipid Res. 2004, 43, 403–448.
  • Deamer, D. The role of lipid membranes in life’s origin. Life (Basel) 2017, 7 (1), 5.
  • Dembitsky, V.M.; Al Quntar, A.A.A.; Srebnik, M. Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chem. Rev. 2011, 111, 209–237.
  • Lopes, D.; Rey, F.; Leal, M.C.; Lillebø, A.I.; Calado, R.; Domingues, M.R. Bioactivities of lipid extracts and complex lipids from seaweeds: Current knowledge and future prospects. Mar. Drugs 2021, 19 (12), 686.
  • Cheng, X.; Smith, J.C. Biological membrane organization and cellular signaling. Chem. Rev. 2019, 119, 5849–5880.
  • Dembitsky, V.M. Betaine ether-linked glycerolipids: chemistry and biology. Prog. Lipid Res. 1996, 35, 1–51.
  • Dembitsky, V.M.; Maoka, T. Allenic and cumulenic lipids. Prog. Lipid Res. 2003, 46, 328–375.
  • Ruiz-Mirazo, K.; Briones, C.; de la Escosura, A. Chemical roots of biological evolution: the origins of life as a process of development of autonomous functional systems. Open Biol. 2017, 7, 170050.
  • Dyson, F. Origins of Life. Cambridge University Press, Cambridge, 1999.
  • Kitadai, N.; Maruyama, S. Origins of building blocks of life: A review. Geosci. Front. 2018, 9, 1117–1153.
  • Walker, S.I. The new physics needed to probe the origins of life. Nature 2019, 569(7754), 36.
  • Mariscal, C.; Barahona, A.; Aubert-Kato, N. Hidden concepts in the history and philosophy of origins- of-life studies: a Workshop report. Orig. Life Evol. Biosph. 2019, 49, 111–145.
  • Lopez, A.; Fiore, M. Investigating prebiotic protocells for a comprehensive understanding of the origins of life: A prebiotic systems chemistry perspective. Life 2019, 9, 49–58.
  • Bellstedt, D.U. The building blocks and origins of life. HTS Theolog. Stud. 2020, 76, a6054.
  • McCollom, T.M.; Ritter, G.; Simoneit, B.R.T. Lipid synthesis under hydrothermal conditions by Fischer- Tropsch-type reactions. Orig. Life Evol. Biosph. 1999, 29, 153–166.
  • Rushdi, A.I.; Simoneit, B.R.T. Lipid formation by aqueous Fischer-Tropsch-type synthesis over a temperature range of 100 to 400 C. Orig. Life Evol. Biosph. 2001, 31, 103–118.
  • Simoneit, B.R.T. Petroleum generation, extraction and migration and abiogenic synthesis in hydrothermal systems. In: Ikan R (ed) Natural and Laboratory- Simulated Thermal Geochemical Processes. Springer, Dordrecht, 2003.
  • Eigenbrode, J.L. Fossil lipids for life-detection: A case study from the early Earth record. In: Botta, O.; Bada, J.L.; Gomez-Elvira, J.; Javaux, E.; Selsis, F.; Summons, R. (eds) Strategies of Life Detection. Space Sciences Series of ISSI, vol 25. Springer, Boston, MA, 2008.
  • Snytnikov, V.N. Astrocatalysis—Abiogenic synthesis and chemical evolution at pregeological stages of the Earth’s formation. Paleontol. J. 2010, 44 (7), 761–777.
  • Опарин, А.И. Происхождение жизни. М.: Моск. рабочий, 1924. (Oparin, A.I. The Origin of Life. Moscow Worker publisher, 1924).
  • Oparin, A.I. The Origin of Life, Ed. J.D. Bernal, Weidenfeld and Nicholson, London, 1924.
  • Опарин, А.И. Происхождение жизни / Под ред. А.Н. Баха. М.-Л., ОНТИ, 1935 [на обл. 1936].
  • Oparin, A.I. The Origin of Life. MacMillan, N. Y., 1938.
  • Oparin, A.I. The Origin and Development of Life. English translation, NASA TTF-488, Washington, D.C.L GPO, 1968.
  • Oparin, A.I. Genesis and Evolutionary Development of Life. Ed. E. Maas, Academic Press, New York; San Francisco; London, 1968.
  • Fox, S.W.; Dose, K.; Oparin, A.I. Molecular evolution and the origin of life. New York, M. Dekker, 1977.
  • Haldane, J.B.S. Origin of life. Ration. Ann. 1929, 148, 3–10.
  • Haldane, J.B.S. The Causes of Evolution. Harper & Brothers, New York & London, 1932.
  • Haldane, J.B.S. The origin of life. New Biol. 1954, 16, 12–27.
  • Haldane, J.B.S. Genesis of Life. In: The Planet Earth. Ed. D.R. Bates, pp. 287–301. Pergamon Press, London; New York; Paris; Los Angeles, 1957.
  • Haldane, J.B.S. The Quest for Extraterrestrial Life: A book of Readings by Donald Goldsmith. Mill Valley, CA, University Science Books, 1980.
  • Tirard, S.; Haldane, J.B.S. The origin of life. J. Genet. 2017, 96, 735–739.
  • Miller, S.L. Production of amino acids under possible primitive Earth conditions. Science 1953, 117, 528.
  • Miller, S.L.; Urey, H.C. Organic compound synthesis on the primitive Earth. Science 1959, 130, 245.
  • Criado-Reyes, J.; Bizzarri, B.M.; García-Ruiz, J.M. The role of borosilicate glass in Miller–Urey experiment. Sci. Rep. 2021, 11, 21009.
  • Ferris, J.P. Prebiotic synthesis on minerals: bridging the prebiotic and RNA worlds. Biol. Bull. 1999, 196, 311–314.
  • Tran, Q.P.; Adam, Z.R.; Fahrenbach, A.C. Prebiotic reaction networks in water. Life 2020, 10, 352.
  • Lazcano, A. Which Way to Life? Orig. Life Evol. Biosph. 2010, 40, 161–167.
  • Sokolova, E.; Spruijt, E.; Hansen, M.M.K.; Dubuc, E.; Groen, J.; Chokkalingam, V.; Piruska, A.; Heus, H.A.; Huck, W.T.S. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. PNAS 2013, 110, 11692–11697.
  • Vieregg, J.R.; Dora, T.Y.; Tang, T. Polynucleotides in cellular mimics: Coacervates and lipid vesicles. Curr. Opin. Colloid Interface Sci. 2016, 26, 50–57.
  • Cronin, J.R.; Pizzarello, S. Amino acids in meteorites. Advan. Space Res. 1983, 3, 5–18,
  • Botta, O., Bada, J.L. Extraterrestrial organic compounds in meteorites. Surveys Geophys. 2002, 23, 411–467.
  • Sephton, M.A. Organic compounds in carbonaceous meteorites. Nat. Prod. Rep. 2002, 19, 292–311.
  • Sephton, M.A. Organic matter in carbonaceous meteorites: past, present and future research. Phil. Trans. R. Soc. 2005, 363A, 2729–2742.
  • Deamer, D. A giant step towards artificial life? Trend. Biotechnol. 2005, 23, 336–338.
  • Deamer, D.W. Assembling Life. Oxford University Press, Oxford, UK, 2019.
  • Deamer, D.W.; Georgiou, C.D. Hydrothermal conditions, and the origin of cellular life. Astrobiology 2015, 15, 1091–1095.
  • Nakashima, S.; Kebukawa, Y.; Kitadai, N.; Igisu, M.; Matsuoka, N. Geochemistry, and the origin of life: from extraterrestrial processes, chemical evolution on Earth, fossilized life's records, to natures of the extant life. Life (Basel) 2018, 8, E39.
  • Leicester, H.M. Alexander Mikhailovich Butlerov. J. Chem. Educat. 1940, 17, 203–209
  • Арбузов, Б.А. 150 лет со дня рождения А.М. Бутлерова. Рос. хим. вестн. 1978. 27 (9): 1791–1794 (Arbuzov, B.A. 150th Anniversary of the birth of A.M. Butlerov. Russ. Chem. Bull. 1978, 27, 1791–1794).
  • Rocke, A.J. Kekulé, Butlerov, and the historiography of the theory of chemical structure. British J. History Sci. 1981, 14, 27–57.
  • Butlerov, A.M. Carbohydrates undergo an aldol condensation reaction with formaldehyde. Compt. Rend. 1861, 5 (145), 247–261.
  • Butlerow, A. Bildung einer Zuckerartigen Substanz durch Synthese. Justus Liebigs Ann. Chem. 1861, 120, 295–298.
  • Вацуро, К.В.; Мищенко, Г.Л. Именные реакции в органической химии. М., Химия, 1976. (Vatsuro, K.V.; Mishchenko, G.L. Named Reactions in Organic Chemistry. Moscow, Khimiya Press, 1976).
  • Sanderson, J.R.; Lin, J.J.; Duranleau, R.G.; Yeakey, E.L.; Marquis, E.T. Free radicals in organic synthesis. A novel synthesis of glycerol based on ethylene glycol and formaldehyde. J. Org. Chem. 1988, 53, 2859–2861.
  • Sanderson, J.R.; Yeakey, E.L.; Lin, J.J.; Duranleau, R.; Marquis, E.T. Free radicals on organic synthesis. A novel synthesis of ethylene glycol based on formaldehyde. J. Org. Chem. 1987, 52, 3243–3246.
  • Botte, G.G. Electrochemical manufacturing in the chemical industry. Electrochem. Soc. Interface. 2014, 23, 49-55.
  • Корнева, Г.А.; Локтев, С.М. Получение этиленгликоля из формальдегида. Успехи химии. 1989, 58 (1), 118–137. (Korneeva, G.A.; Loktev, S.M. The synthesis of ethylene glycol from formaldehyde. Russ. Chem. Rev. 1989, 58 (1), 118–137).
  • Breslow, R.; Ramalingam, V.; Appayee, C. Catalysis of glyceraldehyde synthesis by primary or secondary amino acids under prebiotic conditions as a function of pH. Orig. Life Evol. Biosph. 2013, 43, 323–329.
  • Heidmann, W.; Decker, P.; Pohlmann, R. Origin Life (Tokyo), Japan Sci. Soc. Press, 1978, 8, 625-630.
  • Hough, L.; Richardson, A.C. The Carbohydrates. New York, Acad. Press, 1972.
  • Mizuno, T.; Weiss, A.H. Synthesis, and utilization of formose sugars. Advan. Carbohyd. Chem. Biochem. 1974, 29, 173-185.
  • Civiš, S.; Szabla, R.; Szyja, B.M.; Smykowski, D.; Ivanek, O.; Knížek, A.; Kubelík, P.; Šponer, J.; Ferus, M.; Šponer, J.E. TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth. Sci. Rep. 2016, 6, 23199.
  • Ouellette, R.J.; Rawn, J.D. Glyceraldehyde. Organic Chemistry: Structure, Mechanism, and Synthesis. Elsevier Press, 2014, pp. 241–286.
  • Thauer, R.K.; Jungermann, K.; Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 1977, 41, 100–180.
  • Islam, S.; Powner, M.W. Prebiotic systems chemistry: Complexity overcoming clutter. Chemistry 2017, 2, 470–501.
  • Weber, A.L. The triose model: glyceraldehyde as a source of energy and monomers for prebiotic condensation reactions. Origins Life 1987, 17, 107–119.
  • Weber, A.L. The sugar model: Autocatalytic activity of the triose–ammonia reaction. Origins Life Evol. Biosph. 2007, 37, 105–111.
  • Deamer, D.; Weber, A.L. Bioenergetics and life's origins. Cold Spring Harb. Perspect. Biol. 2010, 2, a004929.
  • Epps, D.E.; Nooner, D.W. Cyanamide mediated synthesis under plausible primitive Earth conditions. VI. The synthesis of glycerol and glycerophosphates. J. Mol. Evol. 1979, 14, 235–241.
  • Rao, M.; Eichnerg, J.; Oro, J. Synthesis of phosphatidylcholine under possible primitive Earth conditions. J. Mol. Evol. 1982, 18, 196–202.
  • Misuraca, L.; Matsuo, T.; Cisse, A; LoRicco, J.; Caliò, A.; Zanotti, J.-M.; Demé. D.; Oger, P.; Peters, J. High temperature molecular motions within a model protomembrane architecture. Phys. Chem. Chem. Phys., 2022, 24, 15083–15090.
  • Segre, D.; Ben-Eli, D.; Deamer, D.W.; Lancet, D. The lipid world. Orig. Life Evol. Biosph. 2001, 31, 119–145.
  • Oro, J. Chemical synthesis of lipids and the origin of life. J. Biol. Phys. 1995, 20, 135–147.
  • Mlynarski, J.; Guta, B. Organocatalytic synthesis of carbohydrates. Chem. Soc. Rev. 2012, 41, 587–596.
  • Amend, J.P.; Plyasunov, A.V. Carbohydrates in thermophile metabolism: calculation of the standard modal thermodynamic properties of aqueous pentoses and hexoses at elevated temperatures and pressures. Geochim. Cosmochim. Acta 2001, 65, 3901–3917.
  • Pestunova, O.P.; Simonov, A.N.; Snytnikov, V.N.; Parmon, V.N. Prebiotic Carbohydrates and Their Derivates. Biosphere Origin and Evolution, Springer, N. Y., 2008.
  • Розенберг, Г.С. Модели в фитоценологии. М., Наука, 1984. (Rozenberg, G.S. Models in phytocenology. Moscow, USSR, Nauka Press, 1984).
  • Rozenberg, G.S.; Dembitsky, V.M. Computersimulated evolution of the biomembranes basic structural units. Scientific Computing and Automation(Europe) Conference. Maastricht, The Netherlands, p. 023, 1990.
  • Розенберг, Г.С.; Рудерман, С.Ю. О количестве независимых, одинаково распределенных случайных величин, разделяющих одноименные поворотные точки // Статистический анализ и моделирование процессов и систем. Вып. 4. Таганрог: Изд-во ТРТИ, 1977. С. 107–109. (Rozenberg, G.S.; Ruderman, R.D. Statistical analysis and modeling of processes and systems. Taganrog, USSR, 1977).
  • Dembitsky, V.M.; Rozenberg, G.S. Modeling of abiotic synthesis of low-molecular polyols as structural units of biological membranes. Proceedings of the Sixth ISSOL Meeting and Ninth International Conference on the Origin of Life. Prague, Czechoslovakia, pp. 32, 1989.
  • Дембицкий, В.М.; Розенберг, Г.С. Моделирование абиотического синтеза низкомолекулярных полиолов – структурных единиц биологических мембран. Биол. науки. 1991, 6, 137–143. (Dembitsky, V.M.; Rozenberg, G.S. Modelling of abiotic synthesis low-molecular polyols – structural units of biological membranes. Biol. Sci. (Moscow University), 1991, 6, 137–143).
  • Landi, M.; Margaritopoulou, T.; Papadakis, I.E. Boron toxicity in higher plants: an update. Planta 2019, 250, 1011–1032.
  • Dembitsky, V.M.; Smoum, R.; Al-Quntar, A.A.; Ali, H.A.; Pergament, I.; Srebnik, M. Natural occurrence of boron-containing compounds in plants, algae, and microorganisms. Plant Sci. 2002, 163, 931–942.
  • Dembitsky, V. M.; Gloriozova T.A. Naturally occurring boron containing compounds and their biological activities. J. Nat. Prod. Resour. 2017, 3, 147–154.
  • Matsunaga, T.; Nagata, T. In vivo 11B-NMR observation of plant tissue. Anal. Sci. 1995, 11, 889–892.
  • Lutz, O.; Humpfer, E.; Spraul, M. Ascertainment of boric-acid esters in wine by 11B-NMR. Naturwissen, 1991, 78, 67–69.
  • Smoum, R.; Rubinstein, A.; Dembitsky, V.M.; Srebnik, M. Boron containing compounds as protease inhibitors. Chem. Rev. 2012, 112, 4156–4220.
  • Bergelson, L.D. Diol lipids. Prog. Chem. Fats Lipids 1969, 10, 241–263.
  • Bergelson, L.D. Diol lipids new types of naturally occurring lipid substances. Fette, Seifen, Anstrichmittel 1973, 75, 89-96.
  • Бергельсон, Л.Д.; Вавер, В.А.; Проказова, Н.В. Новые типы нейтральных липидов. Докл. АН СССР, 1964, 157 (1), 122–124. (Bergelson, L.D.; Vaver, V.A.; Prokasova, N.V. New types of neutral lipids. Dokl. Akad. Nauk SSSR 1964, 157, 122–124).
  • Bergelson, L.D.; Vaver, V.A.; Prokazova, N.V.; Ushakov, A.N.; Rozynov, B.V.; Stefanov, K. Diol lipids: XXII. The occurrence of diol choline phosphatides in rat liver. Biochim. Biophys. Acta Lipids Lipid Metabol. 1972, 260, 57, 1–582.
  • Vaver, V.A.; Popkova, G.A.; Ushakov, A.N.; Bergelson, L.D. Diol lipids. Isolation of ethyleneglycol dipalmitate from regenerating rat liver. Chem. Phys. Lipids 1969, 3, 78-82.
  • Вавер, В.А.; Щенников, В.А.; Бергельсон, Л.Д. Диольные липиды. Двухатомные спирты в фосфолипидах тканей млекопитающих. Биохимия, 1967, 32 (5), 1027–1031.
  • Pond, J.L.; Langwothy, T.A.; Holzer, G. Longchain diols: A new class of membrane lipids from a thermophilic bacterium. Science 1986, 231, 1134–1136.
  • Wait, R.; Carreto, L.; Nobre, M.F.; Ferreira, A.M.; Ferreira, A.M.; Da Costa, M.S. Characterization of novel long-chain 1,2-diols in Thermus species and demonstration that Thermus strains contain both glycerol-linked and diol-linked glycolipids. J. Bacteriol. 1997, 179, 6154–6162.
  • Méjanelle, L.; Sanchez-Gargallo, A.; Bentaleb, I.; Grimalt, J.O. Long chain n-alkyl diols, hydroxyl ketones, and sterols in a marine eustigmatophyte, Nannochloropsis gaditana, and in Brachionus plicatilis feeding on the algae. Org. Geochem. 2003, 34, 527–538.
  • van der Meer, M.T.J.; Schouten, S.; Hanada, S.; Hopmans, E.C.; Sinninghe Damsté, J.S.; Ward, D.M. Alkane-1,2-diol-based glycosides and fatty glycosides and wax esters in Roseiflexus castenholzii and hot spring microbial mats. Arch. Microbiol. 2002, 178, 229–237.
  • Versteegh, G.J.M.; Bosch, H.J.; de Leeuw, J.; de Leeuw, J. Potential paleo environmental information of C24 to C36 mid-chain diols, keto-ols and mid-chain hydroxy fatty acids; a critical review. Org. Geochem. 1997, 27, 1–13.
  • Lindberg, O. On surface reactions in the sea urchin egg. Exp. Cell Res. 1950, 1, 105–114.
  • Baumann, W.J.; Schupp, E.; Lin, J.-T. Naturally occurring diol lipids. XI. Diol lipids of rat liver. Quantitation and structural characteristics of neutral lipids and phospholipids derived from ethanediol, propanediols, and butanediols. Biochemistry 1975, 144, 841–847.
  • Rudney, H. The synthesis of dl-propanediol-1- phosphate and C14-labeled propanediol and their isolation from liver tissue. J. Biol. Chem. 1954, 210, 353–360.
  • Sacks, J. A fractionation procedure for the acidsoluble phosphorus compounds of liver. J. Biol. Chem. 1949, 205, 655–666.
  • Dratz, A.F.; Handler, P. Renal phosphate and carbohydrate metabolism studied with the aid of radiophosphorus. J. Biol. Chem. 1952, 197, 419–427.
  • Le Page, G.A. Phosphorylated intermediates in tumor glycolysis II. Isolation of phosphate esters from tumors. Cancer Res. 1948, 8, 197–200.
  • Asselineau, J.; Lederer, E. Chemistry of lipids. Ann. Rev. Biochem. 1961, 30, 71–92.
  • Demarteau-Ginsburg, H.; Miquel, A.M. On the presence of ethylene glycol in mycobacterial lipids. Bull. Soc. Chim. 1962, 44, 679.
  • Вульфсон, Н.С.; Головкина, Л.И.; Фридландский, Г.В.; Ушаков, А.Н.; Попова С.М.; Вавер, В.А.; Бергельсон, Л.Д. Диоловые липиды. Закономерности разложения жирнокислотных производных диолов под действием электрического тока. Докл. АН СССР. 1971, 198, 833–836. (Vulfson, N.S.; Golovkina, L.I.; Fridlandski, G.V.; Ushakov, A.N.; Popova, S.M.; Vaver, V.A.; Bergelson, L.D. Diol lipids. Regularities of decomposition of fatty acid derivatives of diols subject to electric shock. Dokl. Akad. Nauk SSSR 1971, 198, 833–836).
  • Thiele, O.W.; Schwinn, G. The free lipids of Brucella melitensis and Bordetella pertussis. Eur. J. Biochem. 1973, 34, 333–344.
  • Chiluwal, K.; Roh, G.H.; Kim, J.; Park, C.G. Acaricidal activity of the aggregation pheromone of Japanese pine sawyer against two-spotted spider mite. J. Asia-Pacific Entomol. 2020, 23, 86–90.
  • Lee, S.M.; Hong, D.K.; Jang, S.H.; Lee, K.Y. Effects of C10‐ and C12‐chain length alkyl analogs of monochamol on attraction of longhorn pine sawyer Monochamus saltuarius (Coleoptera: Cerambycidae). Entomolog. Res. 2018, 48, 448–452.
  • Miller, D.R.; Allison, J.D.; Crowe, C.M.; Dickinson, D.M.; Eglitis, A.; Hofstetter, R.W. Pine sawyers (Coleoptera: Cerambycidae) attracted to α-pinene, monochamol, and ipsenol in North America. J. Econom. Entomol. 2016, 109, 1205–1214.
  • Ryall, K.; Silk, P.; Webster, R.P.; Gutowski, J.M.; Meng, Q. Further evidence that monochamol is attractive to Monochamus (Coleoptera: Cerambycidae) species, with attraction synergised by host plant volatiles and bark beetle (Coleoptera: Curculionidae) pheromones. Can. Entomolog. 2015, 147, 564–579.
  • Gurr, M.I.; James, A.T. Neutral Lipids: glycerides, sterol esters, vitamin A esters, waxes. In: Lipid Biochemistry: An Introduction. Springer, Dordrecht, 1980.
  • Varanasi, U.; Malins, D.C. Naturally occurring diol lipids: Dialkoxypentanes in porpoise (Phocoena phocoena) jaw oil. Science 1969, 166, 1158-1159.
  • Kramer, J.K.G.; Holman, R.T.; Baumann, W.J. Mass spectrometric analysis of mono- and dialkyl ethers of diols. Lipids 1971, 6, 727–733.
  • Batrakov, S.G.; Bergelson, L.D. Lipids of the Streptomycettes. Structural investigation and biological interrelation a review. Chem. Phys. Lipids 1978, 21, 1–29.
  • Vaver, V.A.; Pisareva, N.A.; Rozynov, B.V.; Bergelson, L.D. Diol lipids, XX). Alkyl and alk-1-enyl ethers of ethanediol in lipids of starfish. Chem. Phys. Lipids 1971, 7, 75–92.
  • Проказова, Н.В.; Тодрия, К.Г.; Вавер, В.А.; Бергельсон, Л.Д. Дипольные липиды. Изв. АН СССР, сер. хим. 1974, 23, 2569–2574 (Prokazova, N.V.; Todriya, K.G.; Vaver, V.A.; Bergelson, L.D. Dipole lipids. Russ. Chem. Bull. 1974, 23, 2569–2574).
  • Vaver, V.A.; Todria, K.G.; Prokazova, N.V.; Rozynov, B.V.; Bergelson, L.D. Diol lipids. Acylated ethyleneglycol glycosides. A new type of natural glycolipid. Biochim. Biophys. Acta 1976, 486, 60–69.
  • Wang, C.; Mahrous, E.A.; Lee, R.E.; Vestling, M.M.; Takayama, K. Novel polyoxyethylene-containing glycolipids are synthesized in Corynebacterium matruchotii and Mycobacterium smegmatis cultured in the presence of Tween 80. J. Lipids 2011, 6, 676535.
  • Lawrie, J.W. Glycerol, and the glycols – production, properties and analysis. The Chemical Catalog Company, Inc, New York, NY, 1928.
  • Pagliaro, M.; Rossi, M. The Future of Glycerol: New Uses of a Versatile Raw Material. RSC Publ., Philadelphia (USA), 2008.
  • Eoff, J.R.; Linder, W.V.; Beyer, G.F. Production of glycerin from sugar by fermentation. Ind. Eng. Chem. 1919, 11, 842-845.
  • Larsson, C.; Gustafsson L. Glycerol production in relation to the ATP pool and heat production rate of the yeasts Debaryomyces hansenii and Saccharomyces cerevisiae during salt stress. Arch. Microbiol. 1987, 147, 358–363.
  • Wang, Z.; Zhuge, J.; Fang, H.; Prior, B.A. Glycerol production by microbial fermentation: A review. Biotechnol. Advan. 2001, 19, 201–223.
  • Zhuge, J.; Fang, H.-Y.; Wang, Z.-X.; Chen, D.-Z.; Jin, H.-R.; Gu, H.-L. Glycerol production by a novel osmotolerant yeast Candida glycerinogenes. Appl. Microbiol. Biotechnol. 2001, 55, 686–692.
  • Blomqvist, J.; Passoth, V. Dekkera bruxellensis – spoilage yeast with biotechnological potential, and a model for yeast evolution, physiology, and competitiveness. FEMS Yeast Res. 2015, 15, 021.
  • Lee, J.; Levin, D.E. Methylated metabolite of arsenite blocks glycerol production in yeast by inhibition of glycerol-3-phosphate dehydrogenase. Mol. Biol. Cell 2019, 30, 2097–2347.
  • Ben-Amotz, A. The Alga Dunaliella. Boca Raton CRC Press, FL, 2009.
  • Ben-Amotz, A.; Sussman, I.; Avron, M. Glycerol production by Dunaliella. Mislin, H. et al. (Eds.), New Trends In: Research and Utilization of Solar Energy through Biological Systems. Springer Basel AG, 1982.
  • Grizeau, D.; Navarro, J.M. Glycerol production by Dunaliella tertiolecta immobilized within Ca-alginate beads. Biotechnol. Lett. 1986, 8, 261–264.
  • Ravji, R.G.; Rodriguez, S.B.; Thornton, R.J. Glycerol production by four common grape molds. Am. J. Enol. Vitic. 1988, 39, 77–82.
  • Kates, M. Bacterial lipids. Advan. Lipid Res. 1964, 2, 17–90.
  • Kates, M. Archaebacterial lipids: structure, biosynthesis, and function. Biochem. Soc. Symp. 1992, 58, 51–72.
  • De Rosa, M.; Gambacorta, A.; Gliozzi, A. Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol. Rev. 1986, 50, 70–80.
  • De Rosa, M.; Gambacorta, A. The lipids of archaebacteria. Prog. Lipid Res. 1988, 27, 153–175.
  • Beisson, Y.L.; Thelen, J.J.; Fedosejev, E.; Harwood, J.L. The lipid biochemistry of eukaryotic algae. Prog Lipid Res. 2019, 74, 31–68.
  • Cacas, J.L.; Furta, F.; Le Guédard, M.; Schmitter, J.M.; Buré, C.; Gerbeau-Pissot, P.; Moreau, P.; Bessoule, J.J.; Simon-Plas, F.; Mongrand, S. Lipids of plant membrane rafts. Prog. Lipid Res. 2012, 51, 272–299.
  • Vítová, M.; Palyzová, A.; Řezanka, T. Plasm-alogens – Ubiquitous molecules occurring widely, from anaerobic bacteria to humans. Prog. Lipid Res. 2021, 83, 101–111.
  • Lamy, A. Ueber einige Bestandtheile des Protococcus vulgaris. Z. Praktisch. Chem. 1852, 57, 21–28.
  • Bamberger, M.; Landsiedl, A. Erythritol in Trentepohlia jolithus. Monatshefte für Chem. 1900, 21, 571–573.
  • Gustavs, L.; Gors, M.; Karsten, U. Polyol patterns in biofilm-forming aeroterrestrial green algae (Trebouxiophyceae, Chlorophyta). J. Phycol. 2011, 47, 533–537.
  • Sambhwani, K.; Modi, J.; Singhala, A.; Bramhabatt, H.; Mishra, A.; Mantria, V.A. Analysis of functional traits in female gametophytic and tetrasporophytic life phases of industrially important red alga Gracilaria dura (Rhodophyta: Gracilariacae). J. Appl. Phycol. 2020, 32, 1961–1969.
  • Shintani, T. Food industrial production of monosaccharides using microbial, enzymatic, and chemical methods. Fermentation 2019, 5, 47.
  • Stenhouse, J. Examination of the proximate principles of some of the lichens. Philosoph. Transact. Royal Soc. London 1848, 138, 63–89.
  • Duong, T.H.; Huynh, B.L.C.; Chavasiri, W.; Chollet-Krugler, M.; Nguyen, V.K. New erythritol derivatives from the fertile form of Roccella montagnei. Phytochemistry 2017, 137, 156–164.
  • Plouvier, V. Distribution of aliphatic polyols and cyclitols. In: Chemical Plant Taxonomy, Swain, T. (Ed), pp. 314–354, Academic Press, London, and N. Y., 1963.
  • Boesten, D.M.P.H.J.; den Hartog, G.J.M.; de Cock, P. Health effects of erythritol. Nutrafoods 2015, 14, 3–9.
  • McComb, E.A.; Rendig, V.V. Isolation and identification of l-threitol from plants fed l-sorbose. Arch. Biochem. Biophys. 1963, 103, 84–86.
  • Hesse, O. Beitrag zur Kenntnis der Flechten und ihrer charakteristischen Bestandteile. Z. Praktische. Chem. 1915, 92, 425–466.
  • Ullah, Z.; Kaplaner, E.; Singec, M.H.; Muhammad, A.; Nawaz, M.T.; Öztürk, M. Sugars and phthalate from mushroom Sarcosphaera crassa (Santi) Pouzar. J. Ong. Chem. Res. 2017, 3, 1–10.
  • Oxford, A.E.; Raistrick, H. Studies in the biochemistry of micro-organisms: i-Erythritol, a metabolic product of Penicillium brevicompactum Dierckx and P. cyclopium Westling. Biochem. J. 1935, 29, 1599–1601.
  • Stodola, F.H. A note on meso-erythritol, a metabolic product of Aspergillus terreus. J. Biol. Chem. 1946, 166, 79–88.
  • Birkinshaw, J.H.; Stickings, C.E.; Tessier, P. Biochemistry of the wood-rotting fungi. The production of d-threitol (l-erythritol) by Armillaria mellea (Vahl) Quélet. Biochem. J. 1948, 42, 329–332.
  • Tomaszewska, L.; Rywińska, A.; Gładkowski, W. Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J. Ind. Microbiol. Biotechnol. 2012, 39, 1333–1343.
  • Kitajima, J.; Ishikawa, T.; Fujimatu, E.; Kondho, K.; Takayanagi, T. Glycosides of 2-C-methyl-Derythritol from the fruits of anise, coriander, and cumin. Phytochemistry 2003, 62, 115–120.
  • Yang, L.; Peng, K.; Zhao, S.; Zhao, F.; Chen, L.; Qiu, F. 2-Methyl-l-erythritol glycosides from Gardenia jasminoides. Fitoterapia 2013, 89, 126–130.
  • Herz, S.; Wungsintaweekul, J.; Schuhr, C.A.; Hecht, S.; Lüttgen, H. Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2Cmethyl-d-erythritol 2-phosphate to 2C-methyl-derythritol 2,4-cyclo-diphosphate. PNAS 2000, 97, 2486–2490.
  • Трутко, С.М.; Дорофеева, Л.В.; Щербакова, В.А.; Чувильская, Н.А.; Лауринавичюс, К.С.; Бинюков, В.И.; Островский, Д.Н.; Хинтц, М.; Виснер, И.; Иомаа, Х.; Акименко, В.К. Распространение немевалонатного и мевало-натного пути биосинтеза изопреноидов среди бактерий различных систематических групп. Микробиология, 2005, 74 (1), 185–190. (Trutko, S.M.; Dorofeeva, L.V.; Shcherbakova, V.A.; et al. Occurrence of nonmevalonate and mevalonate pathways for isoprenoid biosynthesis in bacteria of different taxonomic groups. Microbiol. 2005, 74 (1), 185–190).
  • Hong, L.W.; Min, C.; Xian, Y.C.; Jiang, Y.Y.; Zhong, L.X.; Hua, L.Z. A new 2-C-methyl-Derythritol 2,4-cyclodiphosphate synthase gene from Taxus media: cloning, characterization, and functional complementation. J. Med. Plants Res. 2009, 3, 395–402.
  • González‐Cabanelas, D.; Wright, L.P.; Paetz, C.; Onkokesung, N.; Gershenzon, J.; Rodríguez‐Concepción, M.; Phillips, M.A. The diversion of 2‐Cmethyl‐d‐erythritol‐2,4‐cyclodiphosphate from the 2‐C‐methyl‐d‐erythritol 4‐phosphate pathway to hemiterpene glycosides mediates stress responses in Arabidopsis thaliana. Plant J. 2015, 82, 122–137.
  • Honold, A.; Lettl, C.; Schindele, F.; Illarionov, B.; Haas, R.; Witschel, M.; Bacher, A, Fischer M. Inhibitors of the bifunctional 2‐C‐methyl‐d‐erythritol 4‐phosphate cytidylyl transferase/2‐C‐methyl‐D‐erythritol‐2,4‐cyclopyrophosphate synthase (IspDF) of Helicobacter pylori. Helvetica Chim. Acta 2019, 102, e1800228.
  • MacDonald, D.L.; Fischer, H.O.L.; Ballou, C.E. The enantiomorphic erythritol 4-phosphates. J. Am. Chem. Soc. 1956, 78, 3720–3722.
  • Sperry, J.F.; Robertson, D.C. Erythritol catabolism by Brucella abortus. J. Bacteriol. 1975, 121, 619–630.
  • Arutchelvi, J.I.; Bhaduri, S.; Uppara, P.V. Mannosylerythritol lipids: a review. J. Ind. Microbiol. Biotechnol. 2008, 35, 1559–1570.
  • Yoon, J.-W.; Jeon, E.-J.; Jung, I.-H.; Min, M.-J.; Lee, H.-Y.; Kim, M.-J. Maltosyl-erythritol, a major transglycosylation product of erythritol by Bacillus stearothermophilus maltogenic amylase. Biosci. Biotechnol. Biochem. 2003, 67, 525–531.
  • Ohk, S.H.; Nam, S.W.; Kim, J.M.; Yoo, Y.J.; Bai, D.H. Purification and characterization of cell wall hydrolase from alkalophilic Bacillus mutanolyticus YU5215. J. Microbiol. Biotechnol. 2004, 14, 1142–1149.
  • Ward, D.; Brassell, S.; Eglinton, G. Archaebacterial lipids in hot-spring microbial mats. Nature 1985, 318, 656–659.
  • Chappe, B.; Albrecht, P.; Michaelis, W. Polar lipids of archaebacteria in sediments and petroleums. Science 1982, 217, 65–66.
  • Coelho, A.L.S.; Feuser, P.E.; Carciofi, B.A.M. Mannosylerythritol lipids: antimicrobial and biomedical properties. Appl. Microbiol. Biotechnol. 2020, 104, 2297–2318.
  • Morita, T.; Fukuoka, T.; Imura, T.; Kitamoto, D. Mannosylerythritol lipids: production and applications. J. Oleo Sci. 2015, 64, 133–141.
  • Yu, M.; Liu, Z.; Zeng, G.; Zhong, H. Characteristics of mannosylerythritol lipids and their environmental potential. Carbohyd. Res. 2015, 407, 63–72.
  • Bhardwaj, G.; Cameotra, S.S.; Chopra, H.K. Biosurfactants from Fungi: A Review. J. Pet. Environ. Biotechnol. 2013, 4, 160–178.
  • Kitamoto, D. Naturally engineered glycolipid biosurfactants leading to distinctive self-assembling properties. Yakugaku Zasshi 2008, 128, 695–706.
  • Boothroyd, B.; Thorn, J.A.; Haskins, R.H. Biochemistry of the ustilaginales. XII. Characterization of extracellular glycolipids produced by Ustilago sp. Can. J. Biochem. Physiol. 1956, 34, 10–14.
  • Haskins, R.H.; Thorn, J.A.; Boothroyd, B. Biochemistry of the ustilagenales. XI. Metabolic products of Ustilago zeae in submerged culture. Can. J. Microbiol. 1955, 1, 749–756.
  • Morita, T.; Fukuoka, T.; Kosaka, A. Selective formation of mannosyl-L-arabitol lipid by Pseudozyma tsukubaensis JCM16987. Appl. Microbiol. Biotechnol. 2015, 99, 5833–5841.
  • Bhattacharjee, S.S.; Haskins, R.H.; Gorin, P.A.J. Location of acyl groups on two partly acylated glycolipids from strains of Ustilago (smut fungi). Carbohydr. Res. 1970, 13, 235–246.
  • Spoeckner, S.; Wray, V.; Nimtz, M.; Lang, S. Glycolipids of the smut fungus Ustilago maydis from cultivation on renewable resources. Appl. Microbiol. Biotechnol. 1999, 51, 33–39.
  • Kim, H.-S.; Yoon, B.D.; Choung, D.H.; Oh, H.M.; Katsuragi, T.; Tani, Y. Characterization of a biosurfactant, mannosylerythritol lipid produced from Candida sp. SY16. Appl. Microbiol. Biotechnol. 1999, 52, 713–721.
  • Rau, U.; Nguyen, L.A.; Schulz, S.; Wray, V.; Nimtz, M.; Roeper, H. Formation and analysis of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl. Microbiol. Biotechnol. 2005, 66, 551–593.
  • Morita, T.; Konishi, M.; Fukuoka, T.; Imura, T.; Kitamoto, D. Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence. Appl. Microbiol. Biotechnol. 2006, 73, 305–313.
  • Deml, G.; Anke, T.; Oberwinkler, F.; Gianetti, B.M.; Steglich, W. Schizonellin A and B, new glycolipids from Schizonella melanogramma. Phytochemistry 1980, 19, 83–87.
  • Kitamoto, D.; Haneishi, K.; Nakahara, T.; Tabuchi, T. Production of mannosylerythritol lipids by Candida antarctica from vegetable oils. Agric. Biol. Chem. 1990, 54, 37–40.
  • Kitamoto, D.; Ikegami, T.; Suzuki, G.T.; Sasaki, A.; Takeyama, Y.; Idemoto, Y. Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma (Candida antarctica). Biotechnol. Lett. 2001, 23, 1709–1714.
  • Fukuoka, T.; Morita, T.; Konishi, M.; Imura, T.; Kitamoto, D. Characterization of new types of mannosylerythritol lipids as biosurfactants produced from soybean oil by a Basidiomycetes yeast, Pseudozyma shanxiensis. J. Oleo Sci. 2007, 56, 435–442.
  • Konishi, M.; Morita, T.; Fukuoka, T.; Imura, T.; Kakugawa, K.; Kitamoto, D. Production of diVerent types of mannosylerythritol lipids as biosurfactants by the newly isolated yeast strains belonging to the genus Pseudozyma. Appl. Microbiol. Biotechnol. 2007, 75, 521–531.
  • Konishi, M.; Morita, T.; Fukuoka, T.; Imura, T.; Kakugawa, K.; Kitamoto, D. Ecient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59. Appl. Microbiol. Biotechnol. 2008, 78, 37–46.
  • Morita, T.; Konishi, M.; Fukuoka, T.; Imura, T.; Yamamoto, S.; Kitagawa, M. Identification of Pseudozyma graminicola CBS 10092 as a producer of glycolipid biosurfactants, mannosylerythritol lipids. J. Oleo Sci. 2008, 57, 123–131.
  • Yamamoto, S.; Fukuoka, T.; Imura, T.; Morita, T.; Yanagidani, S.; Kitamoto, D.; Kitagawa, M. Production of a novel mannosylerythritol lipid containing a hydroxy fatty acid from castor oil by Pseudozyma tsukubaensis. J. Oleo Sci. 2013, 62, 381–389.
  • Price, N.P.J.; Bischoff, K.M.; Leathers, T.D.; Cossé, A.A.; Manitchotpisit, P. Polyols, not sugars, determine the structural diversity of anti-streptococcal liamocins produced by Aureobasidium pullulans strain NRRL 50380. J. Antibiot. 2017, 70, 136–141.
  • Fluharty, A.L.; O’Brien, J.S. A Mannose- and erythritol-containing glycolipid from Ustilago maydis. Biochemistry 1969, 8, 2627–2632.
  • Bourne, E.J. The polyhydric alcohols. Acyclic polyhydric alcohols. In: Åberg, B. (Ed) Aufbau, Speicherung, Mobilisierung und Umbildung der Kohlenhydrate. Handbuch der Pflanzenphysiologie, Springer, Berlin, Heidelberg, Vol. 6, 1958.
  • Merck, E. Adonit, ein krystallisierender Korper aus Adonis vernalis. Arch. Pharm. 1893, 231, 129–131.
  • Евдокимов, П.К. Влияние возраста и стадии развития на химический состав Adonis turkestanicus. Раст. ресурсы. 1977, 12, 552–557. (Evdokimov, P.K. Effect of the state of maturation and vegetative phase on the chemical composition of Adonis turkestanica. Rastit. Resur. (USSR) 1977, 12, 552–557).
  • Комиссаренко, Н.Ф.; Ступакова, Э.П.; Воробьев, Н.Е.; Карнус, С.И. Выделение адонита из некоторых видов Adonis L. и его количественное определение в сырье. Растит. ресурсы. 1982, 18, 273-277. (Komissarenko, N.F.; Stupakova, E.P.; Vorob’ev, N.; Karnus, S.I. Extraction of adonitol from certain species of Adonis L. and its quantitative determination in raw material. Rastit. Resur. (USSR) 1982, 18, 273-277).
  • Tanker, M.; Özden T. Isolation of active ingredients from Adonis annua L. and chemical research thereon. Ankara Üniversitesi Eczacılık Fakültesi Dergisi 1980, 10, 86–101.
  • Barrero, A.F.; Ahmed, A.H.; Ibn Mansour, S.A.; Rodrı́guez-Garcı́a, I.; López, A.; Muñoz-Dorado, M. Saikosaponins from roots of Bupleurum gibraltaricum and Bupleurum spinosum. Phytochemistry 2000, 54, 741–745.
  • Rai, N.P.; Adhikari, B.B.; Paudel, A.; Masuda, K.; Mckelvey, R.D.; Manandhar, M.D. Phytochemical constituents of the flowers of Sarcococca coriacea of Nepalese origin. J. Nepal Chem. Soc. 2006, 21, 1–7.
  • Poxton, I.R. Teichoic acids, lipoteichoic acids and other secondary cell wall and membrane polysaccharides of Gram-Positive bacteria. Mol. Med. Microbiol. 2015, 1, 91–103.
  • Schneewind, O.; Missiakas, D. Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. J. Bacteriol. 2014, 196, 1133–1142.
  • Потехина, Н.В.; Стрешинская, Г.М.; Тульская, Е.М.; Козлова, Ю.И.; Сенченкова, С.Н.; Шашков, А.С. Фосфатсодержащие полимеры клеточных стенок бацилл. Биохимия, 2011, 76 (7), 914–924. (Potekhina, N.V.; Streshinskaya, G.M.; Tul'skaya, E.M.; Kozlova, Y.I.; Senchenkova, S.N.; Shashkov, A.S. Phosphate-containing cell wall polymers of bacilli. Biochemistry (Moscow) 2011, 76, 914–924).
  • Neuhaus, F.C.; Baddiley, J. A continuum of anionic charge: structures and functions of D-alanylteichoic acids in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 2003, 67, 686–723.
  • Lambert, P.A.; Hancock, I.C.; Baddiley, J. Occurrence, and function of membrane teichoic acids. Biochim. Biophys. Acta 1977, 472, 1–12.
  • Wicken, A.J.; Knox, K.W. Lipoteichoic acids: A new class of bacterial antigen new series. Science 1975, 187 (4182), 1161–1167.
  • Winkelhausen, E.; Kuzmanova, S. Microbial conversion of d-xylose to xylitol. J. Ferment. Bioengineer. 1998, 86, 1–14.
  • Granström, T.B.; Izumori, K.; Leisol, M. A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl. Microbiol. Biotechnol. 2007, 74, 273–276.
  • Rafiqul, I.S.M.; Sakinah, A.M. Processes for the production of xylitol-A review. J. Food Rev. Int. 2013, 29, 127–156.
  • Arcano, Y.; Garcia, O.; Mandelli, D.; Carvalho, W.; Pontes, L. Xylitol: A review on the progress and challenges of its production by chemical route. Catalysis Today 2018, 8, 11.
  • Dembitsky, V.M. The multiple properties of some of the lichenized Ascomycetes: Biological activity and active metabolites. In: Plant Adaptation Strategies in Changing Environment. Shukla, V., Kumar, S., Kumar, N. (Eds), Springer Nature Singapore Pte Ltd. pp. 201-234, 2017.
  • Dembitsky, V.M. Paradigm shifts in fungal secondary metabolite research: Unusual fatty acids incorporated into fungal peptides. Int. J. Curr. Res. Biosci. Plant Biol. 2017, 4, 7–29.
  • Torres, A.; Dor, I.; Rotem, J.; Srebnik, M.; Dembitsky, V.M. Characterization of surface n-alkanes and fatty acids of the epiphytic lichen Xanthoria parietina, its photobiont a green alga Trebouxia sp., and its mycobiont, from the Jerusalem hills. Eur. J. Biochem. 2003, 270, 2120–2125.
  • Torres, A.; Hochberg, M.; Pergament, I.; Smoum, R.; Niddam, V.; Dembitsky, V.M. A new UV‐B absorbing mycosporine with photo protective activity from the lichenized ascomycete Collema cristatum. Eur. J. Biochem. 2004, 271, 780–784.
  • Dembitsky, V.M. Lipids of lichens. Prog. Lipid Res. 1992, 31, 373–397.
  • Dembitsky, V.M. Chemistry and biodiversity of the biologically active natural glycosides. Chem. Biodiver. 2004, 1, 673–781.
  • Dembitsky, V.M. Natural neo acids and neo alkanes: their analogs and derivatives. Lipids 2006, 41, 309–340.
  • Dembitsky, V.M. Bioactive cyclobutane-containing alkaloids. J. Nat. Med. 2008, 62, 1–33.
  • Dembitsky, V.M.; Bychek, I.; Rozentsvet, O.A.; Shustov, M.V. Fatty acid and phospholipid compositions of some lichen species from the Volga River basin. Cryptogam. Bot. 1992, 2, 391–394.
  • Dembitsky, V.M.; Bychek, I.A.; Kashin, A.G. Chemical constituents of some lichen species. J. Hattori Bot. Lab. 1992, 71, 255–262.
  • Řezanka, T.; Temina, M.; Tolstikov, A.G.; Dembitsky, V.M. Natural microbial UV radiation filters- Mycosporine-like amino acids. Folia Microbiol. 2004, 49, 339–352.
  • Dembitsky, V.M.; Rezanka, T.; Bychek, I.A.; Shustov, M.V. Fatty acid composition of Palmelia lichens. Phytochemistry 1992, 31, 841–843.
  • Dembitsky, V.M.; Rezanka, T.; Bychek, I.A. Lipid composition of some lichens. Phytochemistry 1992, 31, 1617–1620.
  • Dembitsky, V.M.; Rezanka, T.; Bychek, I.A. Fatty acid and phospholipids from lichens of the order Leconorales. Phytochemistry 1992, 31, 851–853.
  • Lindberg, B.; Wachtmeister, C.A.; Wickberg, B. Studies on the chemistry of lichens. II. Umbilicin, an arabitol galactoside from Umbilicaria pustulata. Acta Chem. Scand. 1952, 6, 1052–1055.
  • Bednar, T.W.; Smith, D.C. Studies in the Physiology of Lichens. VI. Preliminary studies of photosynthesis and carbohydrate metabolism of the lichen Xanthoria aureola. New Phytol. 1966, 65, 211–220.
  • Armstrong, R.A.; Smith, S.N. The levels of ribitol, arabitol and mannitol in individual lobes of the lichen Parmelia conspersa (Ehrh. ex Ach.) ACH. Environ. Exp. Bot. 1994, 34, 253–260.
  • Armstrong, R.A.; Bradwell, T. Growth of foliose lichens: a review. Symbiosis 2011, 53, 1–16.
  • Kordowska-Wiater, M. Production of arabitol by yeasts: current status and future prospects. J. Appl. Microbiol. 2015, 119, 303–314.
  • Maruo, B.; Hattori, T.; Takahashi, H. Excretion of ribitol and sucrose by green algae into the culture medium. Agr. Biol. Chem. 1965, 29, 1084–1089.
  • Hajek, J.; Vaczi, P.; Bartak, M. Photosynthetic electron transport at low temperatures in the green algal foliose lichens Lasallia pustulata and Umbilicaria hirsuta affected by manipulated levels of ribitol. Photosynthetica 2009, 47, 199–205.
  • Richardson, D.H.S.; Smith, D.C. Lichen physiology. X. The isolated algal and fungal symbionts of Xanthoria aureola. New Phytol. 1968, 67, 69–77.
  • Dahlman, L.; Persson, J.; Näsholm, T. Carbon and nitrogen distribution in the green algal lichens Hypogymnia physodes and Platismatia glauca in relation to nutrient supply. Planta 2003, 217, 41–48.
  • Kordowska-Wiater, M.; Targoński, Z.; Jarosz, A. Biotransformation of L-arabinose to arabitol by yeasts from genera Pichia and Candida. Biotechnologia 2008, 1, 177-188.
  • Koganti, S.; Kuo, T.M.; Kurtzman, C.P.; Smith, N.; Ju, L.-K. Production of arabitol from glycerol: strain screening and study of factors affecting production yield. Appl. Microbiol. Biotechnol. 2011, 90, 257–267.
  • Rice, T.; Zannini, E.; Elke, K.A.; Coffey, A. A review of polyols – biotechnological production, food applications, regulation, labeling and health effects. Crit. Rev. Food Sci. Nutrit. 2020, 60, 2034–2051.
  • Bieleski, R.L. Sugar alcohols. In: Plant Carbohydrates. Ed. Loewus, F.A.; Tanner, W. Berlin, Heidelberg: Springer, 1982, Vol. 1, p. 158–192.
  • Miura, M.; Shimotori, Y.; Nakatani, H. Bioconversion of birch wood hemicellulose hydrolyzate to xylitol. Appl. Biochem. Biotechnol. 2015, 176, 947–955.
  • Saha, B.C.; Kennedy, G.J. Production of xylitol from mixed sugars of xylose and arabinose without co-producing arabitol. Biocatal. Agr. Biotech. 2020, 29, 101786.
  • Uhari, M.; Tapiainen, T.; Kontiokari, T. Xylitol in preventing acute otitis media. Adv. Food Res. 1982, 28, 373–403.
  • Uhari, M.; Tapiainen, T.; Kontiokari, T. Food technological evaluation of xylitol. Vaccine 2000, 19, S144–S147.
  • Dembitsky, V.M. Astonishing diversity of natural surfactants: 1. Glycosides of fatty acids and alcohols. Lipids 2004, 39, 933–953.
  • Dembitsky, V.M. Astonishing diversity of natural surfactants: 2. Polyether glycosidic ionophores and macrocyclic glycosides. Lipids 2005, 40, 219–248.
  • Dembitsky, V.M. Astonishing diversity of natural surfactants: 3. Carotenoid glycosides and isoprenoid glycolipids. Lipids 2005, 40, 535–557.
  • Dembitsky, V.M. Astonishing diversity of natural surfactants: 4. Fatty acid amide glycosides, their analogs and derivatives. Lipids 2005, 40, 641–660.
  • Dembitsky, V.M. Astonishing diversity of natural surfactants: 5. Biologically active glycosides of aromatic metabolites. Lipids 2005, 40, 869–900.
  • Dembitsky, V.M. Astonishing diversity of natural surfactants: 6. Biologically active marine and terrestrial alkaloid glycosides. Lipids 2005, 40, 1081–1114.
  • Dembitsky, V.M. Astonishing diversity of natural surfactants: 7. Biologically active hemi-and monoterpenoid glycosides. Lipids 2006, 41, 1–27.
  • Kulakovskaya, E.; Kulakovskaya, T. Extracellular Glycolipids of Yeasts: Biodiversity, Biochemistry, and Prospects. Academic Press, N. Y., 2014.
  • Kasai, Y.; Komatsu, K.; Shigemori, H.; Tsuda, M.; Mikami, Y. Cladionol A, a Polyketide Glycoside from marine-derived fungus Gliocladium species. J. Nat. Prod. 2005, 68, 777–779.
  • Freinkman, E.; Oh, D.C.; Scott, J.J.; Currie, C.R.; Clardy, J. Bionectriol A, a polyketide glycoside from the fungus Bionectria sp. associated with the fungus-growing ant, Apterostigma dentigerum. Tetrahedron Lett. 2009, 50, 6834–6837.
  • Tabata, N.; Ohyama, Y.; Tomoda, H.; Abe, T.; Namikoshi, M.; Omura, S. Structure elucidation of roselipins, inhibitors of diacylglycerol acyltransferase produced by Gliodadium roseum KF-1040. J. Antibiot. 1999, 52, 815–826.
  • Tomoda, H.; Ohyama, Y.; Abe, T.; Tabata, N. Roselipins, inhibitors of diacylglycerol acyltransferase, produced by Gliocladium roseum KF-1040. J. Antibiot. 1999, 52, 689–694.
Еще
Статья научная