Modeling of doubly fed induction generator for vertical axis wind turbine

Бесплатный доступ

Global energy demand forms the challenge of selecting a proper power source. The choice is either to continue using traditional fossil fuels, projected to expire in 50-70 years, or to speed up the development of renewables, which could be used considerably longer. Today the advanced choice is the second option. Hence, the new methods and approaches have to be developed, diversified, and/or improved. The paper presents a new MATLAB Simulink simulation model used to estimate the integrated power generated by Vertical Axis Wind Turbine (VAWT). The material presents a step by step description of the model development. The value of generated power fluctuations is accounted for and verified in accordance with the grid capacity available at the moment. The parameters under analysis are as follows: Efficiency, Cost, and System Response Time. The benefits are comprehensively analyzed against disadvantages. A special advantage is considered as a combination of two systems, getting high performance and power stability.

Еще

Integrated power, power stability, vawt response, wind power

Короткий адрес: https://sciup.org/147232717

IDR: 147232717   |   DOI: 10.14529/power190105

Список литературы Modeling of doubly fed induction generator for vertical axis wind turbine

  • Spinato F., Tavner P.J., van Bussel G.J.W., et al. Reliability of Wind Turbine Sub-Assemblies // IET Renew. Power Gener., 2009, vol. 3 (4), pp. 387-401. DOI: 10.1049/iet-rpg.2008.0060
  • Van Bussel G.J.W., Zaaijer M.B. Reliability, Availability and Maintenance Aspects of Large-Scale Offshore Wind Farms, a Concepts Study // IMarEst, MAREC Conf., Newcastle Upon Tyne, March 2001.
  • Shires A. Design Optimization of an Offshore Vertical-Axis Wind Turbine // Proc. ICE - Energy, 2013, vol. 166, (EN1), pp. 7-18.
  • Zehringer R., Stuck A., Lang T. Material Requirements for High-Voltage High-Power IGBT Devices // Solid State Electron., 1998, vol. 42, no. 12, pp. 2139-2151. DOI: 10.1016/s0038-1101(98)00209-3
  • Blaabjerg F., Liserre M., Ma K. Power Electronic Converters for Wind Turbine Systems // IEEE Trans. Ind. Appl., 2012, vol. 48, no. 2, pp. 708-719. DOI: 10.1109/tia.2011.2181290
  • Busca C., Teodorescu R., Blaabjerg F., et al. An Overview of the Reliability Prediction Related Aspects of High Power IGBTs in Wind Power Applications // Microelectron. Reliab., 2011, vol. 51, pp. 1903-1907.
  • DOI: 10.1016/j.microrel.2011.06.053
  • Solomin E.V., Sirotkin E.A., Martyanov A.S. Adaptive Control over the Permanent Characteristics of a Wind Turbine // Procedia Engineering Journal, 2015, vol. 129, pp. 640-646 (Journal reference: PROENG27157. PII: S1877-7058(15)03968-5).
  • DOI: 10.1016/j.proeng.2015.12.084
  • Kirpichnikova I.M., Martyanov A.S., Solomin E.V. Vertical Axis Wind Turbines. New Aspects // Alternative Energy and Ecology. The International Scholarly Journal Alternativnaya Energetika i Ekologiya, 2013, no. 1-2 (118), pp. 55-58.
  • Martyanov A.S., Solomin E.V. Outdoor Lighting System Based on Windmill // Alternative Energy and Ecology. The international Scholarly Journal Alternativnaya Energetika i Ekologiya, 2010, no. 1 (81). pp. 101-105.
  • Senturk O., Helle L., Munk-Nielsen S., et al. Electro-Thermal Modelling for Junction Temperature Cycling-Based Lifetime Prediction of a Press-Pack IGBT 3L-NPC-VSC Applied to Large Wind Turbines // IEEE Energy Conversion Congress and Exposition, 2011, pp. 568-575.
  • DOI: 10.1109/ecce.2011.6063820
  • Yang S., Xiang D., Bryant A., et al. Condition Monitoring for Device Reliability in Power Electronic Converters: A Review // IEEE Trans. Power Electron., 2010, vol. 25, no. 11, pp. 2734-2752.
  • DOI: 10.1109/tpel.2010.2049377
  • Fischer K., Stalin T., Wenske J., et al. Field-Experience Based Root-Cause Analysis of Power-Converter Failure in Wind Turbines // IEEE Trans. Power Electron., 2015, vol. 30, no. 5, pp. 2481-2492.
  • DOI: 10.1109/tpel.2014.2361733
  • Bartram M., von Bloh J., De Doncker R.W. Doubly-Fed-Machines in Wind-Turbine Systems: is This Application Limiting the Lifetime of IGBT-Frequency-Converters // Thirty-fifth IEEE Annual Power Electronics Specialist Conf. (PESC 04), 2004.
  • DOI: 10.1109/pesc.2004.1355237
  • Weiss D., Eckel H.-G. Fundamental Frequency and Mission Profile Wearout of IGBT in DFIG Converters for Windpower // 15th European Conf. on Power Electronics and Applications (EPE 2013), 2013.
  • Fuchs F., Mertens A. Steady State Lifetime Estimation of the Power Semiconductors in the Rotor Side Converter of a 2mW DFIG Wind Turbine via Power Cycling Capability Analysis // Proc. 14th European Conf. Power Electronics and Applications (EPE 2011), 2011.
  • Datta. S. Chavan, Pooja Kulhari, Nehal Kadaganchi, P.B. Karandikar, Puneet Singh, Rajesh Giri. Prediction of Power Yield from Wind Turbines for Hilly Sites // IEEE 2nd International Future Energy Electronics Conf. (IFEEC), 2015, pp. 1-5.
  • DOI: 10.1109/ifeec.2015.7361624
  • Datta. S. Chavan, Karandikar P.B. Assessment of Flicker Due to Vertical Wind Shear in a Wind Turbine Mounted on a Hill with Linear Approach // 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology, 2014, pp. 259-263.
  • DOI: 10.1109/icaiet.2014.50
  • Bhuiyan Muhaimeen, Ronald W. Mehler. Wind Shear Detection for Small and Improvised Airfields // IEEE Aerospace Conf., 2012, pp. 1-8.
  • DOI: 10.1109/aero.2012.6187319
  • Datta. S. Chavan, Karandikar P.B. Linear Model of Flicker Due to Vertical Wind Shear for a Turbine Mounted on a Green Building // 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology, 2014, pp. 253-258.
  • DOI: 10.1109/icaiet.2014.49
  • Datta. S. Chavan, Karandikar P.B., Abhay Kumar Pande, Santhosh Kumar. Assessment of Flicker Owing to Turbulence in a Wind Turbine Placed on a Hill Using Wind Tunnel // International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014], 2014, pp. 560-566.
  • DOI: 10.1109/iccpct.2014.7054811
  • Tan Luong Van, Thanh Hai Nguyen, Dong-Choon Lee. Flicker Mitigation in DFIG Wind Turbine Systems // Proceedings of the 2011 14th European Conference on Power Electronics and Applications, 2011, pp. 1-10.
  • Datta. S. Chavan, Karandikar P.B., Abhay Kumar Pande, Santhosh Kumar. Computation of Flicker as a Result of Turbulence in a Wind Turbine Sited on a Green Building Using wind Tunnel // International Conf. on Circuits, Power and Computing Technologies [ICCPCT-2014], 2014, pp. 554-559.
  • DOI: 10.1109/iccpct.2014.7054810
  • Datta S. Chavan, Aditi Rana, Mahal Raj Singh, Karandikar P.B., Bhide S.D. Empirical Model of Flicker Due to Vertical Wind Shear Instigated by Civilization in a Seashore Wind Turbine Using Wind Tunnel // 2nd International Conf. on Devices, Circuits and Systems (ICDCS), 2014, pp. 1-7.
  • DOI: 10.1109/icdcsyst.2014.6926199
  • Walling R.A., Clark K., Miller N.W., Sanchez-Gasca J.J. Advanced Controls for Mitigation of Flicker Using Doubly-Fed Asynchronous Wind Turbine-Generators // CIRED 2005 - 18th International Conf. and Exhibition on Electricity Distribution, 2005, pp. 1-5.
  • DOI: 10.1049/cp:20051262
Еще
Статья научная