Modeling of soil erosion by water in the provinces of Sikasso and Koulikoro (Republic of Mali)

Бесплатный доступ

Soil along water is arguably the most precious resource on the planet. In addition to its economic benefits, soil provides critical biological services [7]. Despite its pillar functions for society, soil is often overlooked and thus is subjected to degradation and erosion. Soil erosion represents a serious global threat to land, freshwater, and oceans [3]. In Western Africa, erosion is perceived as a critical threat to the livelihoods of millions of people. This study attempts to assess and map the potential annual soil loss in the provinces of Sikasso and Koulikoro (republic of Mali). Spatial modeling of soil loss by rainfall for the year 2018 was provided using rainfall data derived from the European Joint Research Center, the Soil Map of the World (FAO), digital elevation model (SRTM), vegetation activity (MODIS / Terra). Methods of calculation were based on the Remote Sensing and the Revised Universal Soil Loss Equation (RUSLE). The Geoinformation processing of the RUSLE subcomponents involved the use of the LS-factor algorithm of the System for Automated Geoscientific Analyses (SAGA) and the Raster calculator of the ArcGIS tool box. The potential soil loss within the area ranged from 0.02 ton/ha/year to 98.87 tons/ha/year with a mean of 1.63 ton/ha/year. The spatial pattern of the erosion showed a rate of 0.02 to 1 ton/ha/year for 39% of the territory, 1 to 3 tons/ha/year for 47.58%, while 0.01% experienced a rate of more than 50 tons/ha/year. This study despite its match with the result of the global soil loss by water established by Borreli et al (2020) [3], needs to be verified by direct measurements.


Soil erosion, soil loss by water, revised universal soil loss equation (rusle), geoinformation processing, remote sensing, raster calculation

Короткий адрес:

IDR: 147236808   |   DOI: 10.17071/2410-8553-2021-2-36-48

Список литературы Modeling of soil erosion by water in the provinces of Sikasso and Koulikoro (Republic of Mali)

  • Benavidez, R. Jackson, B., Maxwell, D., Norton, K., 2018. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates. Hydrology and Earth System Sciences. 11(22), pp. 6059-6086.
  • Bishop, J., Allen, J., 1989. The On-Site Costs of Soil Erosion in Mali. Bamako, World Bank. Available from: nts-reports/documentdetail/356941468049761035/the-on-site-costs-of-soil-erosion-in-mali [Accessed 8th October 2019].
  • Borrelli, P., Robinson, D., Panagos, P., Lugato, E., Yang, J., Alewell, C., Wuepper, D., Montanarella, L., Ballabio, C., 2020. Land use and climate change impacts on global soil erosion by water (2015-2070). PNAS, 117(36), 21994-2200.
  • CIRAD. 1998. Tropical Soils: some experiences of organic matter management. [Sols tropicaux: quelques expériences de gestion de la matière organique]. Special Tropical Soils [Spécial Sols Tropicaux]. 18 (1249-9951). Available from: textes/divers 15-05/010015874.pdf [Accessed 4 th January 2021].
  • Diallo, D., 1992. Soil erosion in the Sudanese zone of Mali transfer of eroded materials in the Djitiko watershed (Upper Niger) [Erosion des sols en zone Sou-danienne du Mali transfert des matériaux érodés dans le bassin versant de Djitiko (Haut Niger)]. PhD thesis. University of Grenoble. Available from: textes/divers12-12/010023466.pdf [Accessed 5th October 2019].
  • Durigon, V., Carvalho, D., Antunes, M., Oliveira P., Fernandes M., 2014. NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. International Journal of Remote Sensing, 35(2), pp. 441453.
  • European Soil data Centre. 2013. Soil Atlas of Africa. Available from: Atlas/ Documents/JRC africa soil atlas part1.pdf [Accessed 20th September 2020].
  • Hountondji, Y., 2008. Environmental dynamics in the Sahelian and Sudanese zones of West Africa: Analysis of modifications and assessment of degradation of plant cover [Dynamique environnementale en zones sahélienne et soudanienne de l'Afrique de l'Ouest : Analyse des modifications et évaluation de la dégradation du couvert végétal]. PhD thesis. University of Liege. Available from: Dyn amique environnementale en zones sahelienne et souda nienne de l'Afrique de l'Ouest Analyse des modificati ons et evaluation de la degradation du couvert veget al/link/00b7d526a6c444fe0f000000/download [Accessed 4 th January 2021].
  • Hubert H., 1911. The relief of the Niger Loop. Annal of Geography. 20(110), pp. 155-178. Available from: 0003-4010 911 -num 20 110 7382.pdf [Accessed 4th January 2021].
  • Ichaou, A., Peltier, R., 2015. Mali Forrest inventory. [Inventaire forestier du Mali]. Bamako. Report number: 1813.01. Available from: 575876.pdf [Accessed 5th January 2021].
  • Institut National de la Statistique 2011. 4th General Population and Housing Census of Mali. [4eme Recensement Général de la Population et de l'Habitat du Mali]. Bamako. Available from: Démographiques VF.pdf [Accessed 4th January 2021].
  • MEADD, 2017. Third National Communication of Mali to the UNFCCC. [Troisième Communication Nationale du Mali à la CCNUCC]. Bamako. Available from: FINAL TCN 09 01 18.pdf [Accessed 4th January 2021].
  • MEF, 2011. Strategic Framework for Growth and Poverty Reduction. [Cadre Stratégique pour la Croissance et la Réduction de la Pauvreté (CSCRP 2012 - 2017)]. Bamako. Available from: intranet/pdf-intranet/Politique/9-130%202012 MALI CSCRP 2012 2017 VF.pdf [Accessed 5th January 2021].
  • Panagos, P., Ballabio, C., 2017. Global Rainfall Erosivity. European Commission Joint Research Centre. Accessible on request from: [Accessed 6th April 2020].
  • Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Lim, K., Yang, J., Ni, J., Miao, C., Chattopadh-yay, N., Sadeghi, S., Hazbavi, Z., Zabihi, M., Larionov, G., Krasnov, S., Gorobets, A., Levi, Y., Erpul, G., Birkel, C., Hoyos, N., Naipal, V., Oliveira, P., Bonilla, C., Meddi, M., Nel, W., Al Dashti, H., Boni, M., Diodato, N., Van Oost, K., Nearing, M., Ballabio, C., 2017. Global rainfall Erosivity Assessment based on hightemporal resolution rainfall records. Sci. Rep., 1(7).
  • Panagos, P., Borrelli, P., Meusburger, K., 2015. A New European Slope Length and Steepness Factor (LS-Factor) for Modeling Soil Erosion by Water. Geo-sciences, 5(117-126).
  • Pimentel, D., Burgess, M., 2013. Soil Erosion Threatens Food Production. Agriculture journal, 3(3), pp. 2077-0472.
  • Roose, E., 1999. Introduction to the conservation management of water, biomass and soil's fertility. [Introduction à la gestion conservatoire de l'eau, de la biomasse et de la fertilité des sols (GCES)]. Rome, FAO. Available from:à-la-gestion-conservatoire-de-leau-de-la-biomasse-et-de-la-fertilitc-des-sols-e40761577.html [Accessed 15th March 2020].
  • Sheikh, A., Alam, A., 2011. Integration of GIS and Universal Soil Loss Equation (USLE) for soil loss estimation in a Himalayan watershed. Recent Research in Science and Technology, 3(3), pp. 51-57.
  • Troeh, F., Hobbs, A. and Donahue, R., 2003. Soil and Water Conservation for Productivity and Environmental Protection 4th ed. New York, Pearson Education. Available from: .html [Accessed 12th April 2020].
  • Van der Knijff, J., Jones, R., Montanarella, L., 2000. Soil Erosion Risk Assessment in Europe. European Soil Bureau. Available from: ereurnew2.pdf [Accessed 16th March 2021].
  • Zueli, K., 2016. The Physical Environments of Hot and Humid Tropical Regions. [Les Milieux Physiques des Régions Tropicales Chaudes et Humides]. Abidjan, Institute of Tropical Geography [Abidjan, Institut de Géographie Tropicale]. Available from: [Accessed 15th January 2021].
  • Food and Agriculture Organization (FAO). 2007. 1:5.000.000. Digital Soil Map of the World. Available from: Fid=14116 [Accessed 23rd February 2020].
  • National Aeronautics and Space Administration (NASA). (2018) 250m SIN Grid. MODIS/Terra Vegetation Indices 16-Day L3 Global. Available from: [Accessed 15th February 2021].
  • National Aeronautics and Space Administration (NASA). 2018. 30m. Shuttle Radar Topography Mission. Available from: [Accessed 10th March 2021].
  • System for Automated Geoscientific Analyses (v.7.9.0). 2020. Available from: [Accessed 21st February 2021].
  • SAGA-GIS tool Library Documentation (v.7.9.0). 2020. LS factor. Available from: tool doc/7.9.Q/ta hydrology 22.html [Accessed 21st February 2О21].
  • Weather in Mali [Météo au Mali] 2О18. Available from: [Accessed 28th March 2О21].
Статья научная