Modeling of the organic Rankine cycle based on the theory of energy chains

Автор: Kireev N., Kudaschev S., Zhang Q.

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Технические науки

Статья в выпуске: 6 т.10, 2024 года.

Бесплатный доступ

This paper examines an experimental setup of an organic Rankine cycle and proposes a method for describing it using differential equations. The aim of the work is to obtain approximate values of the setup's characteristics before conducting the experiment. The constructive scheme of the experimental device and its operating principle are described in detail. The power circuit of the setup is composed, and complex impedance, frequency function, amplitude-frequency, and phase-frequency characteristics are obtained based on the mathematical transformation of the circuit. The frequency response of the circuit is constructed. As a result of the calculations, the amplitude-frequency and phase-frequency characteristics are obtained, and graphs are plotted based on them. Conclusions are drawn about the dependence of the characteristics on the change in parameters, and the shape of the graphs is explained. The results of the work can be used to predict the behavior of the experimental setup of the organic Rankine cycle and optimize its parameters before conducting physical experiments.

Еще

Organic rankine cycle, power circuit, frequency response, amplitude-frequency characteristic, phase-frequency characteristic, modeling

Короткий адрес: https://sciup.org/14130533

IDR: 14130533   |   DOI: 10.33619/2414-2948/103/43

Список литературы Modeling of the organic Rankine cycle based on the theory of energy chains

  • Gogate, P. R., & Pandit, A. B. (2005). A review and assessment of hydrodynamic cavitation as a technology for the future. Ultrasonics sonochemistry, 12(1-2), 21-27. https://doi.org/10.1016/j.ultsonch.2004.03.007
  • Hammitt, F. G. (1980). Cavitation and multiphase flow phenomena.
  • Sivakumar, M., & Pandit, A. B. (2002). Wastewater treatment: a novel energy efficient hydrodynamic cavitational technique. Ultrasonics sonochemistry, 9(3), 123-131. https://doi.org/10.1016/S1350-4177(01)00122-5
  • Jeong, J. H., & Kwon, Y. C. (2006). Effects of ultrasonic vibration on subcooled pool boiling critical heat flux. Heat and mass transfer, 42, 1155-1161. https://doi.org/10.1007/s00231-005-0079-1
  • Wang, G., Senocak, I., Shyy, W., Ikohagi, T., & Cao, S. (2001). Dynamics of attached turbulent cavitating flows. Progress in Aerospace sciences, 37(6), 551-581. https://doi.org/10.1016/S0376-0421(01)00014-8
  • Barber, B. P., & Putterman, S. J. (1991). Observation of synchronous picosecond sonoluminescence. Nature, 352(6333), 318-320. https://doi.org/10.1038/352318a0
  • Mason, T. J. (1988). Theory. Applications and uses of ultrasound in chemistry. Sonochemistry.
  • Suslick, K. S. (1991). The sonochemical hot spot. The Journal of the Acoustical Society of America, 89(4B_Supplement), 1885-1886. https://doi.org/10.1121/1.2029381
  • Misik, V., & Riesz, P. (1994). Free radical formation by ultrasound in organic liquids: a spin trapping and EPR study. The Journal of Physical Chemistry, 98(6), 1634-1640. https://doi.org/10.1021/j100057a016
  • Kumar, P. S., & Pandit, A. B. (1999). Modeling hydrodynamic cavitation. Chemical engineering & technology: industrial chemistry‐plant equipment‐process engineering-biotechnology, 22(12), 1017-1027. https://doi.org/10.1002/(SICI)1521-4125(199912)22:12<1017::AID-CEAT1017-3.0.CO;2-L
  • Chzhan, Yui, Li, Yumin & Tszi, Tszyan'bin (2011). Chislennoe modelirovanie gidravlicheskogo kavitatsionnogo ustroistva s diafragmoi, 27(3), 219-223. (in Chinese)
  • Badve, M. P., Alpar, T., Pandit, A. B., Gogate, P. R., & Csoka, L. (2015). Modeling the shear rate and pressure drop in a hydrodynamic cavitation reactor with experimental validation based on KI decomposition studies. Ultrasonics sonochemistry, 22, 272-277. https://doi.org/10.1016/j.ultsonch.2014.05.017
  • Makeev, A. N. Impul'snaya sistema teplosnabzheniya obshchestvennogo zdaniya: avtoref. dis. ... kand.tekhn. nauk. Penza, 2010. 19 s. (in Russian)
  • Levtsev, A. P., Kudashev, S. F., Makeev, A. N., & Lysyakov, A. I. (2014). Vliyanie impul'snogo rezhima techeniya teplonositelya na koeffitsient teploperedachi v plastinchatom teploobmennike sistemy goryachego vodosnabzheniya. Sovremennye problemy nauki I obrazovaniya, (2), 89-89. (in Russian)
  • Levtsev, A. P., Makeev, A. N., Makeev, N. F., Narvatov, Ya. A., & Golyanin, A. A. (2015). Obzor i analiz osnovnykh konstruktsii udarnykh klapanov dlya sozdaniya gidravlicheskogo udara. Sovremennye problemy nauki i obrazovaniya, (2-2), 188-188. (in Russian)
  • Aleksandrov, A. A., & Grigor'ev, B. A. (1999). Tablitsy teplofizicheskikh svoistv vody I vodyanogo para. Moscow. (in Russian)
Еще
Статья научная