Моделирование дробового шума цветных подводных изображений
Автор: Шепелев Денис Александрович, Божкова Валентина Петровна, Ершов Егор Иванович, Николаев Дмитрий Петрович
Журнал: Компьютерная оптика @computer-optics
Рубрика: Численные методы и анализ данных
Статья в выпуске: 4 т.44, 2020 года.
Бесплатный доступ
В работе рассматриваются методы имитации цветных подводных изображений на основе натуральных надводных. Имитация подводных изображений широко используется для разработки и тестирования методов улучшения подводных изображений. Большая группа существующих методов использует одну и ту же детерминированную модель преобразования изображения, игнорирующую наличие на изображениях шума. В работе демонстрируется, что это существенно сказывается на общем качестве имитации подводных изображений. Теоретически и численным моделированием показывается, что точность отношения сигнал/шум подводных изображений, имитированных с использованием детерминированного преобразования, падает с увеличением расстояния до объекта съемки. Для решения этой проблемы в работе предлагается новая модель преобразования изображения, которая учитывает наличие шума на изображении и при этом совместима со всеми методами моделирования из рассматриваемой группы. В работе приводятся результаты моделирования с использованием существующей и предложенной моделей, показывающие, что на больших расстояниях новые результаты лучше согласуются с реальными данными.
Подводная фотография, имитационное моделирование подводных изображений, имитационное моделирование шума, цветовые искажения, улучшение подводных изображений, аугментация цветных изображений, синтез тестовых данных
Короткий адрес: https://sciup.org/140250037
IDR: 140250037 | DOI: 10.18287/2412-6179-CO-754
Список литературы Моделирование дробового шума цветных подводных изображений
- Akkaynak, D. Sea-thru: A method for removing water from underwater images / D. Akkaynak, T. Treibitz // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. - 2019. - P. 1682-1691.
- Anwar, S. Underwater scene prior inspired deep underwater image and video enhancement / S. Anwar, C. Li, F. Porikli // Pattern Recognition. - 2020. - Vol. 98. - 107038.
- Li, J. WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images / J. Li, K.A. Skinner, R.M. Eustice, M. Johnson-Roberson // IEEE Robotics and Automation Letters. - 2017. - Vol. 3, Issue 1. - P. 387-394.
- Foresti, G.L. Visual inspection of sea bottom structures by an autonomous underwater vehicle / G.L. Foresti // IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). - 2001. - Vol. 31, Issue 5. - P. 691-705.
- Lavest, J.-M. Multi-view reconstruction combining underwater and air sensors / J.-M. Lavest, F. Guichard, C. Rousseau // Proceedings of the International Conference on Image Processing. - 2002. - Vol. 3. - P. 813-816.
- Kahanov, Y. Analysis of hull remains of the Dor D vessel, Tantura lagoon, Israel / Y. Kahanov, J.G. Royal // The International Journal of Nautical Archaeology. - 2001. - Vol. 30, Issue 2. - P. 257-265.
- Mangeruga, M. Evaluation of underwater image enhancement algorithms under different environmental conditions / M. Mangeruga, M. Cozza, F. Bruno // Journal of Marine Science and Engineering. - 2018. - Vol. 6, Issue 1. - 10.
- Skarlatos, D. Project iMARECULTURE: advanced VR, immersive serious games and augmented reality as tools to raise awareness and access to European underwater cultural heritage / D. Skarlatos, P. Agrafiotis, T. Balogh, F. Bruno, F. Castro, B.D. Petriaggi, S. Demesticha, A. Doulamis, P. Drap, A. Georgopoulos // Euro-Mediterranean Conference. - 2016. - P. 805-813.
- Bryson, M. True color correction of autonomous underwater vehicle imagery / M. Bryson, M. Johnson-Roberson, O. Pizarro, S.B. Williams // Journal of Field Robotics. - 2016. - Vol. 33, Issue 6. - P. 853-874.
- IEC 60529:1989. Degrees of protection provided by enclosures (IP Codes). - 2.2 edition. - Geneva: International Electrotechnical Commission, 2013.
- Gracheva, M.A. Subjective assessment of the quality of static and video images from mobile phones / M.A. Gracheva, V.P. Bozhkova, A.A. Kazakova, I.P. Nikolaev, G.I. Rozhkova // Twelfth International Conference on Machine Vision (ICMV 2019). - 2020. - Vol. 11433. - P. 737-745.
- Berman, D. Diving into haze-lines: Color restoration of underwater images / D. Berman, T. Treibitz, S. Avidan // Proceedings of the British Machine Vision Conference (BMVC). - 2017. - Vol. 1, Issue 2. - P. 1-12.
- Li, C. An underwater image enhancement benchmark dataset and beyond / C. Li, C. Guo, W. Ren, R. Cong, J. Hou, S. Kwong, D. Tao // IEEE Transactions on Image Processing. - 2020. - Vol. 29. - P. 4376-4389.
- Duarte, A. A dataset to evaluate underwater image restoration methods / A. Duarte, F. Codevilla, J.O. Gaya, S.S.C. Botelho // OCEANS 2016 - Shanghai. - 2016. - P. 1-6.
- Arlazarov, V.V. MIDV-500: A dataset for identity document analysis and recognition on mobile devices in video stream / V.V. Arlazarov, K.B. Bulatov, T.S. Chernov, V.L. Arlazarov // Computer Optics. - 2019. - Vol. 43(5). - P. 818-824. -
- DOI: 10.18287/2412-6179-2019-43-5-818-824
- Smagina, A. Multiple light source dataset for colour research / A. Smagina, E. Ershov, A. Grigoryev // Twelfth International Conference on Machine Vision (ICMV 2019). - 2020. - Vol. 11433. - P. 635-642.
- Boffety, M. Color image simulation for underwater optics / M. Boffety, F. Galland, A.-G. Allais // Applied Optics. - 2012. - Vol. 51, Issue 23. - P. 5633-5642.
- Chang, H. Single underwater image restoration based on depth estimation and transmission compensation / H. Chang, C. Cheng, C. Sung // IEEE Journal of Oceanic Engineering. - 2019. - Vol. 44, Issue 4. - P. 1130-1149.
- Hu, Y. Underwater image restoration based on convolutional neural network / Y. Hu, K. Wang, X. Zhao, H. Wang, Y. Li // Proceedings of the 10th Asian Conference on Machine Learning. - 2018. - Vol. 95. - P. 296-311.
- Li, C.-Y. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior / C.-Y. Li, J.-C. Guo, R.-M. Cong, Y.-W. Pang, B. Wang // IEEE Transactions on Image Processing. - 2016. - Vol. 25, Issue 12. - P. 5664-5677.
- Schechner, Y.Y. Clear underwater vision / Y.Y. Schechner, N. Karpel // Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004). - 2004. - Vol. 1. - P. 536-543.
- Schechner, Y.Y. Recovery of underwater visibility and structure by polarization analysis / Y.Y. Schechner, N. Karpel // IEEE Journal of Oceanic Engineering. - 2005. - Vol. 30, Issue 3. - P. 570-587.
- Zhao, X. Deriving inherent optical properties from background color and underwater image enhancement / X. Zhao, T. Jin, S. Qu // Ocean Engineering. - 2015. - Vol. 94. - P. 163-172.
- Peng, Y.-T. Underwater image restoration based on image blurriness and light absorption / Y.-T. Peng, P.C. Cosman // IEEE Transactions on Image Processing. - 2017. - Vol. 26, Issue 4 - P. 1579-1594.
- Николаев, Д.П. Синтез обучающей выборки в задаче распознавания текста в трехмерном пространстве / Д.П. Николаев, Д.В. Полевой, Н.А. Тарасова // Информационные технологии и вычислительные системы. - 2014. - № 3. - С. 82-88.
- Емельянов, С.О. Методы аугментации обучающих выборок в задачах классификации изображений / С.О. Емельянов, А.А. Иванова, Е.А. Швец, Д.П. Николаев // Сенсорные системы. - 2018. - Т. 32, № 3. - С. 236-245.
- Chernyshova, Y.S. Generation method of synthetic training data for mobile OCR system / Y.S. Chernyshova, A.V. Gayer, A.V. Sheshkus // Proceedings of SPIE. - 2018. - Vol. 10696. - 106962G.
- Butler, D.J. A naturalistic open source movie for optical flow evaluation / D.J. Butler, J. Wulff, G.B. Stanley, M.J. Black // European Conference on Computer Vision (ECCV). - 2012. - Part IV. - P. 611-625.
- Bielova, O. A digital image processing pipeline for modelling of realistic noise in synthetic images / O. Bielova, R. Hänsch, A. Ley, O. Hellwich // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). - 2019. - P. 2905-2914.
- Anwar, S. Diving deeper into underwater image enhancement: A survey [Electronical Resource] / S. Anwar, C. Li. - arXiv preprint arXiv:1907.07863. - 2019. - URL: https://arxiv.org/abs/1907.07863 (request date 10.07.2019).
- Jahne, B. Digital image processing / B. Jahne. - Berlin: Springer-Verlag, 2005. - 607 p.
- Шепелев, Д.А. О проблеме моделирования подводных изображений на основе надводных / Д.А. Шепелев, В.П. Божкова, Е.И. Ершов, Д.П. Николаев // Сборник трудов ИТНТ-2020. - 2020. - (принято, в печати).
- Sarafraz, A. Performance assessment in solving the correspondence problem in underwater stereo imagery / A. Sarafraz, S. Negahdaripour, Y.Y. Schechner // OCEANS 2010 MTS/IEEE Seattle. - 2010. - P. 1-7.