Simulation of laser light focusing with two-layer dielectric microcylinders

Автор: Savelyeva Alexandra Alexandrovna, Kozlova Elena Sergeevna

Журнал: Компьютерная оптика @computer-optics

Рубрика: Дифракционная оптика, оптические технологии

Статья в выпуске: 2 т.45, 2021 года.

Бесплатный доступ

Focusing of a linearly polarized laser beam of wavelength 633 nm with two-layer dielectric microcylinders of a circular cross-section and 2-um diameter was simulated using a finite-difference time-domain (FDTD) method, implemented using the FullWAVE software. It was shown that using a cladding whose refractive index (1.8 or 1.9) is higher than that of the core (1.45), it is possible to increase the depth of focus by a factor of 2.57 multiplied by the incident wavelength and shift the focal spot position along the optical axis away from the microcylinder boundary. It was also shown that parameters of the microcylinder could be chosen in such a way that a tighter focal spot was generated, with its full width at half maximum of intensity being 2.27 of the incident wavelength. The intensity at this focus was shown to be 1.4 times higher than that at the focus generated with a homogeneous microcylinder.

Еще

Two-layer dielectric microcylinder, photonic nanojet, tight focusing, FDTD-method

Короткий адрес: https://sciup.org/140257377

IDR: 140257377   |   DOI: 10.18287/2412-6179-CO-820

Статья научная