Modeling wedge-shaped support of sliding taking into account rheological properties of electroconductive lubricant
Бесплатный доступ
In work the method of formation of the exact automodel solution of a problem of hydrodynamic calculation of the wedge-shaped support (the ram, a guide) using the electroconductive liquid lubricant caused by guide fusion taking into account dependence of viscosity and conductivity of liquid lubricant on pressure is presented. The solution of a task is found on the basis of the system of the equations of the energiya describing the movements of incompressible liquid electroconductive lubricant for a case of “a thin layer” taking into account dependence of viscosity and conductivity of liquid lubricant on pressure, the equation of continuity and expression for the speed of dissipation mechanical for definition of the function caused by fusion of a surface of the guide covered with fusion of a fusible covering. The asymptotic solution of system of the differential equations taking into account boundary conditions on a surface of a guide, the ram and a contour is found in a type of ranks on degrees of the small parameter K caused by fusion and speed of dissipation of mechanical energy. For definition of the field of speeds and pressure in the lubricant and melted layer the exact automodel solution for zero and first approach is found. As a result of finding of the exact automodel decision the value of the function caused by guide fusion (the parameter M characterizing thickness of the melted film) is found. An assessment of influence of the following parameters is given: And (the electric field caused by existence), N (Gartman's number), the M (characterizing thickness of the melted film), To (caused by fusion and speed of dissipation of mechanical energy), (the parameter characterizing dependence of viscosity of lubricant I swore from pressure), In (a vector of magnetic induction) and E (a vector of electric field strength) on the main performance data of the persistent bearing of sliding (the bearing ability and friction force). Results of the numerical analysis show that settlement models of persistent bearings of sliding as a result of additional simultaneous account at their development of dependence on the hydrodynamic pressure of such important factors as viscosity of liquid electroconductive lubricant, conductivity and also influences of thickness of the melted film of a fusible metal covering, magnetic induction and electric field strength are considerably specified. Tribotechnical settlement sizes are specified in the following order: friction force for 43 % bearing ability for 18 %.
Hydrodynamics, a sliding support (the ram, a guide), viscous incompressible liquid electroconductive lubricant, the melted guide surface
Короткий адрес: https://sciup.org/147151760
IDR: 147151760 | DOI: 10.14529/engin170402