Моделирование кольцеобразных структур углеродных нанотрубок как макромолекулярных клубков - возможность гелеобразования

Автор: Атлуханова Луиза Бремовна, Козлов Георгий Владимирович

Журнал: НБИ технологии @nbi-technologies

Рубрика: Инновации в металлургии и материаловедении

Статья в выпуске: 4 т.13, 2019 года.

Бесплатный доступ

В рамках фрактального анализа и теории перколяции исследована возможность формирования геля углеродными нанотрубками (нановолокнами), моделируемых как аналог макромолекулярных клубков, в нанокомпозитах на основе полипропилена. Показано, что для достижения точки гелеобразования необходима специфическая (прямолинейная) конфигурация указанных нанонаполнителей, а реализация этого эффекта может привести к резкому дискретному изменению свойств рассматриваемых нанокомпозитов. Обнаружено, что эффективный модуль упругости нанонаполнителей в полимерной матрице определяется не их жесткостью, а эффективностью переноса приложенного механического напряжения от полимерной матрицы к нанонаполнителю.

Еще

Нанокомпозит, углеродные нанотрубки (нановолокна), кольцеобразные формирования, гель, модуль упругости, конфигурация, свойства

Короткий адрес: https://sciup.org/149131504

IDR: 149131504   |   DOI: 10.15688/NBIT.jvolsu.2019.4.5

Текст научной статьи Моделирование кольцеобразных структур углеродных нанотрубок как макромолекулярных клубков - возможность гелеобразования

DOI:

Как хорошо известно [17; 19], углеродные нанотрубки (нановолокна) формируют в полимерном нанокомпозите свернутые кольцеобразные структуры, внешне похожие на макромолекулярные клубки. Такое поведение указанных нанонаполнителей обусловлено их высокой степенью анизотропии и низкой поперечной жесткостью. В настоящее время предпринято несколько попыток использовать аналогию углеродная нанотрубка-макромоле-кулярный клубок для теоретических оценок [6; 17]. Очевидно, что указанная аналогия позволяет использовать хорошо разработанные методы как классической [1], так и фрактальной [13] физической химии полимерных растворов для анализа поведения углеродных нанотрубок в полимерных нанокомпозитах. В этом случае кольцеобразные структуры нанотрубок рассматриваются как макромолекулярный клубок, а полимерная матрица – как растворитель [17].

Такая трактовка нанокомпозитов поли-мер/углеродные нанотрубки делает необходимым исследование возможности реализации в них процесса гелеобразования, под которым понимается переход жидких (легкоподвижных и вязкотекучих) микрогетерогенных или гомогенных систем в твердофазное состояние геля или студня. Гелеобразование обусловлено возникновением в объеме жидкой системы пространственной фазовой или молекулярной сетки (каркаса), которая лишает систему текучести и придает ей некоторые свойства твердого тела (эластичность, пластичность, хрупкость, прочность), что представляет особый интерес при исследовании свойств полимерных нанокомпозитов [5].

Целью настоящей работы является исследование свойств нанокомпозитов полимер/ углеродные нанотрубки (нановолокна) в рамках теории перколяции и возможности реализации в них процесса гелеобразования.

Эксперимент

В качестве матричного полимера использован полипропилен (ПП) промышленного производства «Каплен» марки 01 030. Эта марка ПП имеет показатель текучести расплава 2,3–

3,6 г/10 мин, средневесовую молекулярную массу ~ (2-3) х 105 и индекс полидисперсности 4,5.

В качестве нанонаполнителя использованы углеродные нанотрубки (УНТ) марки «Та-унит», имеющие наружный диаметр 20–70 нм, внутренний диаметр 5–10 нм и длину 2 мкм и более. В исследуемых нанокомпозитах ПП/ УНТ содержание таунита варьировалось в пределах 0,25–3,0 масс. %. Кроме того, использованы многослойные углеродные нановолокна (УНВ) с числом слоев 20–30 и диаметром 20–30 нм с длиной порядка 2 мкм. Содержание УНВ в нанокомпозитах ПП/УНВ варьировалось в пределах 0,15–3,0 масс. %.

Нанокомпозиты ПП/УНТ и ПП/УНВ получены смешиванием компонентов в расплаве на двухшнековом экструдере Thermo Haake модели Reomex RTW 25/42, производство ФРГ. Смешивание выполнено при температуре 463-503 К и скорости вращения шнека 50 об/мин в течение 5 мин. Образцы для испытаний получены методом литья под давлением на литьевой машине Test Sample Molding Apparate RR/TS MP фирмы Ray-Ran (Тайвань) при температуре 503 К и давлении 43 МПа.

Механические испытания на одноосное растяжение выполнены на образцах в форме двухсторонней лопатки с размерами согласно ГОСТ 112 62-80. Испытания проводились на универсальной испытательной машине Gotech Testing Machine CT-TCS 2000, производство ФРГ, при температуре 293 К и скорости деформации ~ 2 х 10-3 с-1.

Результаты и обсуждение

Авторы [6] предложили использовать для определения модуля упругости Ен нанокомпозитов модифицированное правило смесей, которое в первоначальном варианте дает верхнее предельное значение модуля упругости композитов [7]:

Е н = Е м I 1 Ф н ) + ЬЕнан Ф н , (1)

где Ем и Енан – модули упругости матричного полимера и нанонаполнителя, соответственно, ф -объемное содержание нанонаполнителя, b<1 – коэффициент, отражающий степень реализации свойств нанонаполнителя в полимерном нанокомпозите. Параметр bЕнан по существу представляет собой эффективный модуль нанонаполнителя или, более точно, модуль кольцеобразных структур УНТ (УНВ) Еаэгфр .

Величину ф н можно определить согласно хорошо известной формуле [15]:

W

Ф н = / ,               (2)

ρн где Wн – массовое содержание нанонаполнителя, рн - его плотность, определяемая для наночастиц следующим образом [15]:

Р н = 188 ( D унт ) 1/3 , кг/м3,           (3)

где D УНТ – диаметр углеродных нанотрубок (нановолокон), который дается в нм.

Оценки согласно уравнению (1) показали, что величина снижается по мере роста содержания нанонаполнителя ф н от 51,6 до 9,9 ГПа для нанокомпозитов ПП/УНТ и от 34,9 до 5,5 ГПа для нанокомпозитов ПП/УНВ. Такое изменение Е а э г ф р позволяет предложить следующее соотношение для описания этого изменения:

Е Тгр ~ Ф н Л              (4)

где Е а Т гр – теоретическое значение величины Е а э г ф р , s – показатель, который был выбран равным 0,7 для нанокомпозитов ПП/УНТ и 0,6 – для нанокомпозитов ПП/УНВ.

На рисунке приведено сравнение величин Е а э г ф р и Е а Т гр для рассматриваемых нанокомпозитов, которое показало их достаточно хорошее соответствие (среднее расхождение Е а э г ф р и Е а Т гр составляет ~ 9,5 %). Рассмотрим физические основы применения соотношения (4) для описания модуля упругости кольцеобразных структур УНТ (УНВ). Как известно [14], для описания жесткости полимерных растворов около точки гелеобразования разработано несколько перколяционных концепций, которые дают следующее соотношение для описания их жесткости:

Е ~ ( Р P c ) t , (5)

где Е – модуль упругости полимерного раствора, р – степень конверсии, рс – порог перколяции, t – перколяционный индекс.

Величина t варьируется в достаточно широких пределах в случае различных теоретических и экспериментальных работ (от 1,80 до 3,88 [14]), но общей тенденцией соотношения (5) является увеличение Е по мере роста р , которую в рамках предложенной аналогии следует рассматривать как объемное содержание нанонаполнителя ф н . Это положение принципиально отличается от тенденции соотношения (4), которое показывает снижение Е Тгр по мере роста ф н . Последнее соотношение по своему физическому смыслу более соответствует соотношению, полученному в

Сравнение эффективных модулей упругости кольцеобразных структур УНТ (УНВ) и , рассчитанных согласно уравнениям (1) и (4), соответственно, для нанокомпозитов ПП/УНТ ( 1 ) и ПП/УНВ ( 2 )

работе [3] для описания проводимости 2 случайной смеси двух компонентов:

2 ~ ( P - P c ) 1 . (6)

Указанное сходство позволяет предположить, что соотношение (4) характеризует не собственно жесткость кольцеобразных структур УНТ (УНВ), а их способность передавать приложенное механическое напряжение. Следовательно, в рассматриваемом случае величина является Е а э г ф р аналогом проводимости. Сравнение соотношений (4) и (6) предполагает, что для углеродных нанотрубок (нановолокон) порог перколяции ф с =0. В рамках фрактального анализа точка гелеобразования или порог перколяции определяется следующим образом [8; 11]. Эффект гелеобразования, трактуемый как формирование стягивающего систему кластера, приводит к существенным изменениям параметров, описывающих эту систему, в точке гелеобразования [8]. Так, скорость перемещения кластеров (кольцеобразных структур) 3 с массой m предполагается равной [11]:

9 = т а . (7)

В точке гелеобразования показатель a изменяет знак с отрицательного на положительный. Это означает, что до точки гелеобразования большей подвижностью обладают меньшие кластеры, а за точкой гелеобразования наибольшей подвижностью будет обладать стягивающий кластер, поскольку его масса гораздо больше массы любой кольцеобразной структуры [8; 11].

Аналогичное резкое изменение показателя го в скейлинговом соотношении Смолуховс-кого в точке гелеобразования происходит в рамках концепции кинетического гелеобразования [8]. При го <0,5 для всего распределения размеров кластеров справедлив общий скейлинг и средний размер кластера регулярно растет со временем, а за точкой гелеобразования ( го >0,5) этот скейлинг нарушается: наиболее быстро растет наибольший кластер [8].

Зависимость радиуса кольцеобразных структур УНТ (УНВ) R УНТ от продолжительности переработки t определяется следующим образом [12]:

1/ z

УНТ t ,

где показатель z связан с фрактальной размерностью кольцеобразных структур D f и показателем а уравнением [12]:

z = D f ( 1 а ) _ ( d 2 ) ,             (9)

где d – размерность евклидова пространства, в котором рассматривается фрактал (очевидно, в нашем случае d =3).

Величину R УНТ можно рассчитать с помощью следующего перколяционного соотношения [9]:

= n L УНТ Г УНТ н    ( 2 R УНТ ) 3 ,

где L УНТ и r УНТ – длина и радиус углеродной нанотрубки (нановолокна), соответственно.

Как показали расчеты согласно уравнению (10), наблюдается снижение R УНТ по мере роста j н и при наибольших значениях ф н , соответствующих W h =3 масс. %, зависимости R УНТ( ф н ) имеют тенденцию выхода на асимптотическую ветвь [19], что предполагает достижение кольцеобразными структурами УНТ или УНВ своих минимальных значений R УНТ. По аналогии с макромолекулярными клубками это означает достижение максимально плотной кольцеобразной структуры с максимальным предельным значением ее фрактальной размерности Df ( D п f р ), которая определяется согласно уравнению [10]:

D 7 = ^ d ^ 1 ) .           (11)

Для d =3 величина D п f р =2,286. Далее для оценки величины Df можно использовать модель необратимой агрегации, которая описывает процессы полимеризации (формирования макромолекулярного клубка) и дает следующее соотношение для определения радиуса агрегата частиц Rагр [4]:

R arp ~ c - 1 / ( d - D f ) ,                  (12)

где с 0 – исходная концентрация агрегирующихся частиц.

Коэффициент в соотношении (12) можно определить при следующих условиях: R arp = R УНТ , с 0 = Ф н и D f = D 7 . Значения R УНТ и Ф н приняты для WH =3,0 масс. %. Как показали оценки согласно указанному соотношению, величина D f растет по мере увеличения ф н (снижения R УНТ) от 1,91 до 2,29 для нанокомпозитов ПП/УНТ и от 1,76 до 2,21 для нанокомпозитов ПП/УНВ.

Показатели а и го связаны между собой следующим уравнением [8]:

d - 2

ю = а +      .             (13)

Оценки согласно уравнениям (9) и (13) показали, что условие а =0 и го =0,5, необходимое для достижения точки гелеобразования УНТ (УНВ) реализуется только для Df =1,0, то есть для полностью распрямленных нанотрубок (нановолокон) с R УНТ ^да . Получение нанокомпозитов полимер/углеродные нанотрубки при этих условиях может дать достаточно сильный эффект. Так, изготовление на-нокомпозитных волокон поливиниловый спирт/ многослойные УНТ с содержанием УНТ Wн =60 масс. %, полученных методом «коагуляционного вытягивания нити», который предполагает практически полную ориентацию УНТ в нанокомпозите ( D f ^ 1,0), позволило получить материал с прочностью 1800 МПа, тогда как прочность аналогичных нанокомпозитов, полученных традиционными методами, не превышает ~ 100 МПа [16].

И в заключение рассмотрим выбор показателя s в соотношении (4). Как показано в работе [3], аналогичный показатель в соотношении (6) можно оценить с помощью уравнения:

^ = d u - ( d - 2 ) ,              (14)

где v - критический перколяционный индекс, равный 0,88 [2], du – размерность неэкранированного периметра, оцениваемая согласно уравнению [3]:

(     \ d — Df du =(DJ-1)+—,         (15)

dw где dw – размерность случайного блуждания, принятая в дальнейшем равной 2 (броуновское движение).

Оценки согласно уравнениям (14) и (15) дали следующие значения показателя s : 0,410,57 для нанокомпозитов ПП/УНТ и 0,34-0,53 для нанокомпозитов ПП/УНВ. Как можно видеть, верхняя граница рассчитанных значений показателя s достаточно близка к величинам, выбранным в соотношении (4). Отметим, что экспериментальное доказательство возможности образования геля углеродными нанотрубками в их суспензиях дано в работе [18].

Выводы

Таким образом, результаты настоящей работы показали, что эффективный модуль упругости кольцеобразных структур УНТ (УНВ) характеризует не их жесткость, а способность передавать приложенное механическое напряжение. В отличие от полимеров, углеродные нанотрубки (нановолокна) обнаруживают эффект гелеобразования только в случае своей прямолинейной конфигурации. Достижение указанного эффекта может привести к резкому изменению свойств нанокомпозитов.

Список литературы Моделирование кольцеобразных структур углеродных нанотрубок как макромолекулярных клубков - возможность гелеобразования

  • Будгов, В. П. Физическая химия растворов полимеров / В. П. Будтов. - СПб. : Химия, 1992. - 384 с.
  • Соколов, И. М. Размерность и другие геометрические критические показатели в теории протекания / И. М. Соколов // Успехи физических наук. -1986. - Т. 150, №> 2. - С. 221-256.
  • Стенли, Х. Фрактальные поверхности и модель «термита» для двухкомпонентных случайных материалов / Х. Стенли // Фракталы в физике. -М. : Мир, 1988. - С. 463-477.
  • Шогенов, В. Н. Фрактальные кластеры в физико-химии полимеров / В. Н. Шогенов, Г. В. Козлов. - Нальчик : Полиграфсервис и Т, 2002. - 268 с.
  • Энциклопедия полимеров / под ред. В. А. Кар-гина. М. : Сов. энцикл., 1972. - Т. 1. - 1223 с.
  • Эпоксиаминные композиты со сверхмалыми концентрациями однослойных углеродных нанотрубок / Б. А. Комаров [и др.] // Высокомолек. соед. А. - 2011. - Т. 53, №№ 6. - С. 897-905.
  • Ahmed, S. A Review of Particulate Reinforcement Theories for Polymer Composites / S. Ahmed, F. R. Jones // J. Mater. Sci. - 1990. - Vol. 25, №> 12. - P. 4933-4942.
  • Botet, R. Gelation in Kinetic Growth Models / R. Botet, R. Jullien, M. Kolb // Phys. Rev. A. - 1984. -Vol. 30, №> 4. - P. 2150-2152.
  • Bridge, B. Theoretical Modeling of the Critical Volume Fraction for Percolation Conductivity of Fibre-Loaded Conductive Polymer Composites / B. Bridge // J. Mater. Sci. Lett. - 1989. - Vol. 8, № 2. -P. 102-103.
  • Family, F. Fractal Dimension and Grand Universality of Critical Phenomena / F. Family // J. Stat. Phys. - 1984. - Vol. 36, № 5-6. - P. 881-896.
  • Kolb, M. The Sol-Gel Transition Modeled by Irreversible Aggregation of Clusters / M. Kolb, H. J. Herrmann // J. Phys. A. - 1985. - Vol. 18, № 8. -P. L435-L441.
  • Kolb, M. Unified Description of Static and Dynamic Scaling for Kinetic Cluster Formation / M. Kolb // Phys. Rev. Lett. - 1984. - Vol. 53, № 17. -P. 1653-1656.
  • Kozlov, G. V. Fractal Physical Chemistry of Polymer Solutions / G. V. Kozlov, I. V. Dolbin, G. E. Zaikov // Polymers Research J. - 2007. - Vol. 1, № 1-2. - P. 167-210.
  • Mechanical Properties Near Gelation Threshold, Comparison with Classical and 3d Percolation Theories / M. Adam [et al.] // Pure Appl. Chem. - 1981. - Vol. 53, № 5. - P. 1489-1494.
  • Mikitaev, A. K. Polymer Nanocomposites: Variety of Structural Forms and Applications / A. K. Mikitaev, G. V. Kozlov, G. E. Zaikov. - N. Y. : Nova Science Publishers, Inc., 2008. - 319 p.
  • Moniruzzaman, M. Polymer Nanocomposites Containing Carbon Nanotubes / M. Moniruzzaman, K. I. Winey // Macromolecules. - 2006. - Vol. 39, № 16. -P. 5194-5205.
  • Schaefer, D. W. How Nano are Nanocomposites? / D. W. Schaefer, R. S. Justice // Macromolecules. - 2007. - Vol. 40, № 24. - P. 85018517.
  • Shaffer, M. S. P. Analogies Between Polymer Solution and Carbon Nanotube Dispersions / M. S. P. Shaffer, A. H. Windle // Macromolecules. -1999. - Vol. 32, № 20. - P. 6864-6866.
  • Special Features of the Structure of Carbon Nanotubes in Polymer Composite Media / Yu. G. Yanovsky [et al.] // Nanomechanics Science and Technology. An. Intern. J. - 2012. - Vol. 3, № 2. -P. 99-124.
Еще
Статья научная