Моделирование процесса индукционной пайки волноводных трактов из алюминиевых сплавов
Автор: Бочарова О.А., Мурыгин А.В., Бочаров А.Н., Зайцев Р.В.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Технологические процессы и материалы
Статья в выпуске: 3 т.21, 2020 года.
Бесплатный доступ
Система волноводных трактов представляет собой сложную конструкцию из различных элементов с разнообразной геометрией. Одним из перспективных способов изготовления волноводов является индукционная пайка, основанная на методе индукционного нагрева. Индукционная пайка волноводных трактов обладает рядом технологических особенностей: относительно небольшая разница температуры плавления основного материла АД31 (695-663 0С) и припоя Св. АК12 (577-580 0С) при средней скорости индукционного нагрева 20-25 0С/сек; большое разнообразие типоразмеров элементов волноводных трактов представляет сложность при отработке и последующем воспроизведении технологических параметров процесса индукционной пайки; зоны максимального нагрева элементов волноводных трактов не совпадают с зонами пайки. Поэтому для решения задач управления процессом пайки волноводов необходимо провести моделирование данного процесса. В статье рассмотрена задача моделирования процесса нагрева волновода при индукционной пайке. Сформированы требования к модели. Модель строится на основе дифференциального уравнения теплопроводности. Сформированные требования к модели учитывают геометрические параметры волноводов, физические параметры материалов, начальные и граничные условия, а также неравномерное распределение плотности вихревого тока в волноводе. Предлагается для численного решения уравнения теплопроводности использовать метод конечных разностей. Показан процесс расчета температуры в узлах сетки. Решение осуществляется в два этапа. На первом этапе на промежуточном временном шаге проводится расчет температуры в узлах сетки по оси X, на втором этапе вычисляется температура в узлах сетки по оси Y. Численное решение разностных уравнений по оси X и Y осуществляется методом прогонки. Разработан алгоритм численного решения уравнения теплопроводности.
Волноводный тракт, индукционная пайка, модель процесса нагрева волновода, дифференциальное уравнение теплопроводности, метод конечных разностей
Короткий адрес: https://sciup.org/148321992
IDR: 148321992 | DOI: 10.31772/2587-6066-2020-21-3-424-432
Список литературы Моделирование процесса индукционной пайки волноводных трактов из алюминиевых сплавов
- Zlobin S. K., Mikhnev M. M., Laptenok V. D., Bo-charov A. N., Dolgopolov B. B. [Features of production of waveguide-distribution paths of antenna-feeder devices of space vehicles]. Vestnik SibGAU. 2013, No 6, P. 196-201 (In Russ.).
- Brovko A. V [Problems of automatic welding of radar waveguides]. Izvestiya vuzov: Mashinostroenie. 2013, No. 1, P. 50-54 (In Russ.).
- Bushminsky I. P. Izgotovlenie ehlementov kon-struktsii SVCh. Volnovody i volnovodnye ustroistva [Manufacturing of elements of microwave structures. Waveguides and waveguide devices]. Moscow, Vysshaya shkola Publ., 1974, P. 304.
- Full in-house production facilities. Available at: http ://www. advancedmicrowave. com/our-facilities (accessed: 10.05.2020).
- Pamin S. et al. Joining of aluminum waveguides using pulsed laser radiation. Microwave Conference (APMC), 2015 Asia-Pacific. - IEEE, 2015, vol. 3, P. 1-3.
- Rapoport E., Pleshivtseva Y. Optimal Control of Induction Heating Processes. CRC Press, NY, 2007, 349 p.
- Zlobin S. K. [Features of soldering elements of waveguide-distribution paths from aluminum alloys with the use of an induction heating source]. Materialy XVI Mezhdunar. nauch. konf. "Reshetnevskie chteniya" [Materials XVI Intern. Scientific. Conf "Reshetnev reading"]. Krasnoyarsk, 2012, Vol. 1, P. 16-17 (In Russ.).
- Bocharova O. A., Tynchenko V S., Bocharov A. N., Oreshenko T. G., Murygin A. V, Panfilov I. A. Induction heating simulation of the waveguide assembly elements. Journal of Physics: Conference Series. 2019, Vol. 1353, P. 012040.
- Patidar B., Hussain M. M., Sanjoy Das, Mukherjee D, Tiwari A. P. Simulation and Experimental Validation of Induction Heating of MS Tube for Elevated Temperature. NDT Application Excerpt from the Proceedings of the COMSOL Conference in Pune, 2015, 6 p.
- Rhein S., Tilman U., Knut G. Optimal control of induction heating processes using FEM software. Conference: 2015 European Control Conference (ECC), 2015, P. 515-520.
- Lykov A. V. Teoriya teploprovodnosti [Theory of thermal conductivity]. Moscow, Vysshaya shkola Publ., 1967, 599 p.
- Babat G. I. Induktsionnyi nagrev metallov i ego promyshlennoe primenenie [Induction heating of metals and its industrial application]. Moscow - Leningrad, Energy Publ., 1965, 552 p.
- Paskonov V M., Polezhaev V I., Chudov L. A. Chislennoe modelirovanie protsessov teplo-massoobmena [Numerical modeling of heat and mass transfer processes]. Moscow, Nauka Publ., 1984, 288 p.
- Patankar S. V., Kalabin E. V., Yankov G. G. Chislennoe reshenie zadach teploprovodnosti i konvektiv-nogo teploobmena pri techenii v kanalakh [Numerical solution of problems of thermal conductivity and convec-tive heat transfer during flow in channels]. Moscow, Mehi Publ., 2003, 312 p.
- Samara A. A. Teoriya raznostnykh skhem [Theory of difference schemes]. Moscow, Nauka Publ., 1977, 388 p.
- Zlobin S. K., Mikhnev M. M., Laptenok V. D., Seregin Yu. N., Bocharov A. N., Tynchenko V. S., Dubets Yu. P., Dolgopolov B. B. [Automated equipment and technology for soldering waveguide paths of spacecraft]. Vestnik SibGAU. 2014, No. 4 (56), P. 219-229 (In Russ.).
- Murygin A. V, Tynchenko V. S., Laptenok V. D., Emilova O. A., Seregin Y. N. Modeling of thermal processes in waveguide tracts induction soldering. IOP Conference Series: Materials Science and Engineering. 2017, Vol. 173(1), P. 012026.