Моделирование тонких структур в распределениях продуктов ядерных реакций по массе и их распознавание методами машинного обучения
Автор: Ососков Геннадий Алексеевич, Пятков Юрий Васильевич, Руденко Михаил Олегович
Журнал: Сетевое научное издание «Системный анализ в науке и образовании» @journal-sanse
Статья в выпуске: 1, 2020 года.
Бесплатный доступ
Работа посвящена анализу проявлений кластеризации в редких многотельных распадах тяжелых ядер. Совместно с физиками из ЛЯР ОИЯИ была разработана компьютерная модель тонкой структуры, найденной ими на основе экспериментов с трансурановым элементом калифорний. Для проверки гипотезы о том, что найденная структура объективно существует, а не является шумовым артефактом, было предложено применить глубокую сверточную сеть в качестве бинарного классификатора, обученного на большой выборке из модельных и шумовых изображений. Предварительные результаты применения разработанного нейроклассификатора показывают перспективность предложенного подхода.
Распады тяжелых ядер, моделирование, глубокое обучение, нейроклассификатор
Короткий адрес: https://sciup.org/14123306
IDR: 14123306
Список литературы Моделирование тонких структур в распределениях продуктов ядерных реакций по массе и их распознавание методами машинного обучения
- Pyatkov Yu. V., et al., Nucl. Phys. A 611 (1996), 355-369.
- Pyatkov Yu. V., et al., Nucl. Phys. A 624, (1997), 140.
- Pyatkov Yu. V., et al., Nucl. Instrum. Methods A 488, (2002), 381.
- Pyatkov Yu. V., et al., Phys. Atomic Nuclei 67, (2004), 1726.
- Pyatkov Yu. V., et al., Pattern recognition and image analysis v. 21 (2011), 82-87.
- Pyatkov Yu. V., et al., Eur. Phys. J. A 48, 94 (2012).
- Hough P. V. C. A Method and Means for Recognizing Complex Patterns. ⎯ US Patent: 3,069,654, 1962.
- Pyatkov Yu. V., et al., Proc. of the XXVI International Seminar on Interaction of Neutrons with Nuclei, Xi'an, China, 28 May-01 June 2018 г, eLIBRARY ID: 41346520. — Pp. 285-290.
- Никитин В.А., Ососков Г.А. Автоматизация измерений и обработки данных физического эксперимента (монография). — М.: МГУ, 1986. — C. 185.
- Дмитриевский С.Г., Ососков Г.А. Математическое моделирование. Часть 1. Учебно-методическое пособие. — Дубна, изд. ун-т «Дубна», 2011. — С. 86.
- Wilkins B.D. et al., Phys.Rev. C 14 (1976), 1832.
- Кадурин А. Глубокое обучение. Погружение в мир нейронных сетей / А. Кадурин, Е. Архангельская, С. Николенко . — СПБ.: Питер. — 2018. — С. 480.
- Understanding Categorical Cross-Entropy Loss, Binary Cross-Entropy Loss, Softmax Loss, Logistic Loss, Focal Loss and all those confusing names. — [Электронный ресурс]. URL: https://gom-bru.github.io/2018/05/23/cross_entropy_loss/ (Дата использования 10.11.2019).
- Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization. — [Электронный ре-сурс]. URL: https://arxiv.org/abs/1412.6980. (Дата использования 13.11.2019).