Simulation of the interaction fullerite C60 with the substrate solids

Бесплатный доступ

The widespread use of carbon in various branches of engineering and instrumentation has led to a large amount of research related to its nanoscale allotropic forms - graphene, nanotubes, fullerene, and fullerite. In this article, we studied the process of interaction of fullerite C60 with a solid substrate in order to establish the conditions under which fullerite itself or its fullerenes are deposited on the surface of the substrate. The application of the research can be the creation of new wear-resistant coatings. The study of the interaction of fullerite C60 with a solid substrate was carried out at various parameters of the system. The study has the following conditions: system temperatures - 300, 700, 1150 K; the speed of motion of fullerite is 0.005, 0.01, 0.02 Å/fs; fullerite orientation relative to the substrate. The velocity vector of fullerite C60 was directed along the normal to the upper surface of the substrate. The orientation of fullerite determined by what part it will interact with the substrate - “face”, “edge” or “top”. An iron crystal Fe (100) was simulated as a substrate. To carry out computer simulation, the LAMMPS software package was used, which uses molecular dynamics methods. The results of the research are the revealed patterns of behavior of fullerite C60 in general, and fullerenes in its composition in particular, upon contact with the substrate. For example, it was found that with an increase in the rate of fullerite C60, the number of fullerenes deposited on the substrate decreases. In addition, the orientation of fullerite C60 relative to the substrate has a significant impact on both the process of their interaction and the behavior of settled fullerenes.

Еще

Fullerene, fullerite, solid, substrate, crystal, molecular dynamics, temperature, velocity, edge, face, top

Короткий адрес: https://sciup.org/146281955

IDR: 146281955   |   DOI: 10.15593/perm.mech/2019.3.10

Статья научная