Моделирование засухи в эксперименте и оценка ее воздействия на растения

Автор: Осмоловская Н.Г., Шумилина Ю.С., Гришина Т.В., Дидио А.В., Лукашева Е.М., Билова Т.Е., Фролов А.А.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 4 т.13, 2017 года.

Бесплатный доступ

Засуха является одним из самых разрушительных видов абиотических стрессов, которые вызывают значительные годовые потери урожая и представляют серьезную угрозу для устойчивого сельского хозяйства. Однако, как и другие стрессоры, засуха вызывает у растений широкий спектр реакций, которые реализуются на молекулярном, клеточном и органическом уровне и направлены на снижение разрушительных эффектов и формирование толерантности растений к дефициту воды. Изучение адаптивных ответов растений на засуху и интерпретация механизмов повышения толерантности к засухе требует адекватных и надежных методов экспериментирования и объективных методов оценки результатов исследований. В обзоре рассмотрены три типа современных моделей, которые используются в экспериментах по влиянию засухи на растения, а именно на модели почвы, воды и агара. Обсуждаются основные преимущества и недостатки каждой модели, в том числе модели с имитацией условий засухи, обеспечивая ПЭГ в корневой среде, но выбор оптимальной модели должен определяться в зависимости от конкретных задач, решаемых экспериментатором. В настоящее время у исследователей имеется широкий спектр методологических подходов и инструментов для объективной оценки изменений физиологических и биохимических параметров растений в ответ на засуху. Среди наиболее распространенных - методы, связанные с оценкой таких параметров, как устьичная проводимость, эффективность фотосистемы II с использованием флуорометрии PAM, накопление осмотически активных веществ. Особое внимание уделено методам оценки активности антиоксидантных систем в растениях, прежде всего цикла аскорбат-глутатион, как одного из наиболее эффективных методов скрининга видов и сортов растений по устойчивости к засухе. Необходимо сделать вывод, что для успешной разработки новых стратегий, направленных на улучшение засухоустойчивости растений, требуется приобретение знаний с использованием современных молекулярно-биологических методов, основанных на применении метаболомики и протеомного анализа растений.

Еще

Короткий адрес: https://sciup.org/14324019

IDR: 14324019

Список литературы Моделирование засухи в эксперименте и оценка ее воздействия на растения

  • Albert B., Avice J., Leport L., Bouchereau A. (2012) Nitrogen availability impacts oilseed rape (Brassica napus L.) plant water status and proline production efficiency under water-limited conditions. Planta, 236, 659-676
  • Anjum S.A., Xie X., Wang L., Saleem M.F., Man C., Lei W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026-2032
  • Bartoli C.G., Simontacchi M., Tambussi E., Beltrano J., Montaldi E., Puntarulo S. (1999) Drought and watering-dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves. J. Exp. Bot., 50(332), 375-383
  • Bhargava S., Sawant K. (2013) Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breeding, 132, 21-32
  • Blum A. (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 40, 4-10
  • Bressan R.A., Hasegawa P.M., Handa A.K. (1981) Resistance of cultured higher plant cells to polyethylene glycol-induced water stress. Plant Sci. Lett., 21, 23-30
  • Burkhardt J., Kaiser H., Goldbach H., Kappen L. (1999) Measurements of electrical leaf surface conductance reveal recondensation of transpired water vapour on leaf surfaces. Plant, Cell &Environ., 22, 189-196
  • Chirkova T.V. (2002) Physiologicheskiie osnovy ustojchivosti rastenii. Izd-vo S.-Peterb. Univ.: SPb, 1-244
  • Chutia J., Borah S.P. (2012) Water stress effects on leaf growth and chlorophyll content but not the grain yield in traditional rice (Oryza sativa Linn.) genotypes of Assam, India: II. Protein and proline status in seedlings under PEG induced water stress. Am J. Plant Sci., 3(7), 971-980
  • Daszkowska-Golec A., Szarejko I. (2013) Open or close the gate -stomata action under the control of phytohormones in drought stress conditions. Front. Plant Sci., 4:138, DOI: 10.3389/fpls.2013.00138
  • Davey M.W., Stals E., Panis B., Keulemans J., Swennen R.L. (2005) High-throughput determination of malondialdehyde in plant tissues. Anal. Biochem., 347(2), 201-207
  • Del Rio D., Stewart A.J, Pellegrini N. (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15 (4), 316-328
  • Duque A.S., de Almeida A.M., da Silva A.B., da Silva J.M., Farinha A.P., Santos D., Fevereiro P., de Sousa Araújo S. (2013). Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive. In: Vahdati K., Leslie C. (eds.) Abiotic stress-plant responses and applications in agriculture, INTECH-Open Access Publisher, Croatia, 49-101
  • Grover A., Sahi C., Sanan N., Grover A. (1999) Taming abiotic stresses in plants through genetic engineering: current strategies and perspective. Plant Sci., 143, 101-111
  • Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. (2009) Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev., 29(1), 185-212
  • Fazeli F., Ghorbanli M., Niknam V. (2007) Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biol. Plant., 51, 98-103
  • Foyer C.H., Noctor G. (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol., 155(1), 2-18
  • Frolov A., Bilova T., Paudel G., Berger R., Balcke G.U., Birkemeyer C., Wessjohann L.A. (2017) Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought model. J. Plant Physiol., 208, 70-83
  • Gill S.S., Tuteja N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930
  • Hassan N.S., Shaaban L.D., Hashem E.S.A., Seleem E.E. (2004) In vitro selection for water stress tolerant callus line of Helianthus annus L. cv. Myak. Int. J. Agric. Biol., 6, 13-18
  • He Y., Wu J., Lv B., Li J., Gao Z., Xu W., Baluka F., Shi W., Shaw P.C., Zhang J. (2015) Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress. J. Exp. Bot., 66(8), 2271-2281
  • Hohl M., Schopfer P. (1991) Water relations of growing maize coleoptiles: comparison between mannitol and polyethylene glycol 6000 as external osmotica for adjusting turgor pressure. Plant Physiol., 95(3), 716-722
  • Hunt E.R., Rock B.N., Nobel P.S. (1987) Measurement of leaf relative water content by infrared reflectance. Remote Sens. Environ., 22(3), 429-435
  • Ibragimova S.S., Gorelova V.V., Kochetov A.V., Shumnyj V.K. (2010) Rolj razlichnykh metabolitov v formirovanii stressoustoichivosti rastenij. Vestnik NGU, Ser.Biologia, Klinicheskaya medicina, 8(3), 98-103
  • Ito Y., Katsura K., Maruyama K., Taji T., Kobayashi M., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol., 47(1), 141-153
  • Jacomini E., Bertani A., Mapelli S. (1988) Accumulation of polyethylene glycol 6000 and its effects on water content and carboxhydrate level in water-stressed tomato plants. Can. J. Bot., 66(5), 970-973
  • Jaleel C.A., Manivannan P., Wahid A., Farooq M., Somasundaram R., Panneerselvam R. (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol., 11, 100-105
  • Jefferies R.A. (1994) Drought and chlorophyll fluorescence in field-grown potato (Solanum tuberosum). Physiol. Plant., 90(1), 93-97
  • Jorge T.F., Rodrigues J.A., Caldana C., Schmidt R., van Dongen J.T., Thomas-Oates J., António C. (2016) Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress. Mass Spectrometry Reviews, 35(5), 620-649
  • Kang G.Z., Li G.Z., Liu G.Q., Xu W., Peng X.Q., Wang C.Y., Zhu Y.J., Guo, T. (2013) Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biol. Plant., 57(4), 718-724
  • Kar R.K. (2011) Plant responses to water stress. Role of reactive oxygen species. Plant Signaling & Behavior, 6(11), 1741-1745
  • Kauser R., Athar H.U.R., Ashraf M. (2006) Chlorophyll fluorescence: a potential indicator for rapid assessment of water stress tolerance in canola (Brassica napus L.). Pak. J. Bot, 38(5), 1501-1509
  • Klughammer C., Schreiber U. (2008) Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Appl. Notes, 1(1), 27-35
  • Koyama R., Itoh H., Kimura S., Morioka A., Uno Y. (2012) Augmentation of antioxidant constituents by drought stress to roots in leafy vegetables. HortTechnology, 22(1), 121-125
  • Lambers H., Chapin F.S., Pons T.L. (2008) Plant Physiological Ecology. Second Edition. Springer Science Business Media, LLC. 604 pp
  • La Rocca N., Pupillo P., Puppi G., Rascio N. (2014) Erythronium dens-canis L. (Liliaceae): An unusual case of change of leaf mottling. Plant Physiol., 74, 108-187
  • Lipiec J., Doussan C., Nosalewicz A. Kondracka K. (2013) Effect of drought and heat stresses on plant growth and yield: a review. Int. Agrophys., 27, 463-477
  • Meyer A.J. (2008) The integration of glutathione homeostasis and redox signaling. J. Plant Physiol., 165(13), 1390-1403
  • Monteith J.L., Campbell G.S., Potter E.A. (1998) Theory and performance of a dynamic diffusion porometer. Agric. For. Meteorology, 44(1), 27-38
  • Moore K., Roberts L.J. (1998) Measurement of lipid peroxidation. Free Radic. Res., 28(6), 659-671
  • Motohashi R., Myouga F. (2015). Chlorophyll fluorescence measurements in Arabidopsis plants using a pulse-amplitude-modulated (PAM) fluorometer. Bio-protocol 5(9): e1464 DOI: 10.21769/BioProtoc.1464
  • Munns R. (2002) Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250
  • Noctor G., Foyer C.H. (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49(1), 249-279
  • Pastori G., Foyer C.H., Mullineaux P. (2000) Low temperature-induced changes in the distribution of H2O2 and antioxidants between the bundle sheath and mesophyll cells of maize leaves. J. Exp. Bot., 51, 107-113
  • Rao S., Jabeen F.T.Z. (2013) In vitro selection and characterization of polyethylene glycol (PEG) tolerant callus lines and regeneration of plantlets from the selected callus lines in sugarcane (Saccharum officinarum L.). Physiol. Mol. Biol. Plants, 19(2), 261-268
  • Rhee S., Chang T.-S., Jeong W., Kang D. (2010) Methods for detection and measurement of hydrogen peroxide inside and outside of cell. Mol. Cells, 29(6), 539-549
  • Schreiber U. (2004) Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: An overview. In: Papageorgiou G.C. and Govindjee (eds), Advances in Photosynthesis and Respiration. V.19: Chlorophyll a Fluorescence: A signature of Photosynthesis. Springer: Dordrecht, The Netherlands, 279-319
  • Seki M., Umezawa T., Urano K, Shinozaki K. (2007) Regulatory metabolic networks in drought stress responses. Curr. Opin. Plant Biol., 10(3), 296-302
  • Silva M.D.A., Jifon J.L., Da Silva J.A.G., Sharma V. (2007) Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Brazilian J. Plant Physiol., 19(3), 193-201
  • Singh D.P., Singh P., Kumar A., Sharma H.C. (1985) Transpirational cooling as a screening technique for drought tolerance in oil seed brassicas. Ann. Bot., 56(6), 815-820
  • Smirnoff N. (1996) Botanical briefing: the function and metabolism of ascorbic acid in plants. Ann. Bot., 78(6), 661-669
  • Sobeih W.Y., Dodd I.C., Bacon M.A., Grierson D., Davies W.J. (2004) Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial root-zone drying. J. Exp. Bot., 55(407), 2353-2363
  • Sunaina N.A., Singh N.B. (2016) PEG imposed water deficit and physiological alterations in hydroponic cabbage. Iranian Journal of Plant Physiology, 6(2), 1651-1658
  • Tambussi E.A., Bartoli C.G., Beltrano J., Guiamet J.J., Araus J.L. (2000) Oxidative damage to thylakoid proteins in water-stressed leaves of wheat (Triticum aestivum). Physiol. Plant., 108(4), 398-404
  • Thompson A.J., Thorne E.T., Burbidge A, Jackson A.C., Shsrp R.E., Taylor I.B. (2004) Complementation of notabilis, an abscisic acid-deficient mutant of tomato: importance of sequence context and utility of partial complementation. Plant, Cell & Environ., 27(4), 459-471
  • Todaka D., Zhao Y., Yoshida T., Kudo M., Kidokoro S., Mizoi J., Kodaira K.-S., Takebayashi Y., Kojima M., Sakakibara H., Toyooka K., Sato M., Fernie A.R., Shinozaki K., Yamaguchi-Shinozaki K. (2017) Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J., 90(1), 61-78
  • Van der Weele C.M., Spollen W.G., Sharp R.E., Baskin T.I. (2000) Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. J. Exp. Bot., 51(350), 1555-1562
  • Verslues P.E., Agarwal M., Katiyar-Agarwal S., Zhu J., Zhu J.-K. (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J., 45(4), 523-539
  • Verslues P.E., Bray, E.A. (2004) LWR1 and LWR2 are required for osmoregulation and osmotic adjustment in Arabidopsis. Plant Physiol., 136(1), 2831-2842
  • Verslues P.E., Ober E.S., Sharp R.E. (1998) Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions. Plant Physiol., 116(4), 1403-1412
  • Vinocur B., Altman A. (2006) Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Curr. Opin. Biotechnol., 16(2), 123-132
  • Wingler A., Mares M., Pourtau N. (2004) Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence. New Phytol., 61(3), 781-789
  • Yang C.J., Zhang X.K., Zou C.S., Cheng Y., Zhen P.Y., Li G.Y. (1998) Effects of drought simulated by PEG-6000 on germination and seedling growth of rapeseed (Brassica napus L.). Chinese J. Oil Crop Sci., 29, 425-430
  • Zhao T., Dai A. (2015) The magnitude and causes of global drought changes in the twenty-first century under a low-moderate emissions scenario. Journal of climate, 28, 4490-4512
  • Zhou S.R., Duursma A., Medlyn B.E., Kelly J.W.G., Prentice I.C. (2013) How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agric. Forest Meteorology, 182, 204-214
Еще
Статья обзорная