Modelling convective heat transfer processes between inhomogeneous gas mixtures and surfaces of a small-caliber artillery barrel
Автор: Podkopaev I.A., Podkopaev A.V., Dolzhikov V.I.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Informatics, computer technology and management
Статья в выпуске: 3 vol.24, 2023 года.
Бесплатный доступ
The current models of aviation artillery weapons (AAW) are the pulsed heat engines that convert the energy of a powder charge into the energy of highly compressed and heated powder gases (hereinafter referred to as gases), which, when expanding, perform work on communicating kinetic energy to the projectile. In the context of artillery science, aviation artillery weapons and ammunition are structured as a system that interacts with heat sources and the environment, sequentially completing thermodynamic cycles. The main element that is most intensively subjected to thermophysical loads and has a significant impact on the combat qualities and cost of aviation artillery weapons is a small-caliber artillery barrel (hereinafter referred to as the barrel). As a result, the problem of determining the temperature field of the barrel is one of the central problems of designing aviation artillery weapons and optimizing firing modes. The successful solution of this problem largely depends on the accuracy of modeling the processes of heat transfer to the channel and from the outer wall of the barrel during firing. At the same time, an adequate synthesis and calculation of the relations describing the phenomenon of convection accompanying the shot is difficult, which is due to the presence of phase transformations in the state of gases; the simultaneous presence of supersonic and subsonic zones in the solution regions; the existence of laminar, turbulent flows and other non-linear formations. The aim of the work is to develop a relatively simple and acceptable for engineering practice mathematical model of heat transfer inside and around the barrel with near-wall coolant flows (hereinafter referred to as the model). Achieving the goal of the work is carried out by a concentrated choice of criterion equations of the apparatus of thermodynamic similarity, corresponding to the geometric and physical conditions for the uniqueness of the processes of loading the barrel. The introduction of functions that take into account the dependence of the thermophysical properties of gases on temperature made it possible to increase the accuracy of determining the parameters of heat transfer during a shot by 19% in comparison with the known results. The developed model can be used in applied calculations related to determining the thermal state of the barrel. The specialization of the object of study does not exclude the possibility of refining the model for the purpose of mathematical representation of thermal effects in thermally stressed structures of complex shape.
Heat transfer coefficient, criterion equation of the theory of thermodynamic similarity, thermophysical parameter of gases, adequacy
Короткий адрес: https://sciup.org/148329692
IDR: 148329692 | DOI: 10.31772/2712-8970-2023-24-3-468-481
Список литературы Modelling convective heat transfer processes between inhomogeneous gas mixtures and surfaces of a small-caliber artillery barrel
- Bartl'me F. Gazodinamika goreniya [Gas dynamics of combustion]. Moscow, Energoizdat Publ., 1981, 280 p.
- Kutateladze S. S., Leontiev A. I. Teplomassoobmen i treniye v turbulentnom pogranichnom sloye [Heat and mass transfer and friction in a turbulent boundary layer]. Moscow, Energoizdat Publ., 1985, 320 p.
- Proyektirovaniye raketnykh i stvol'nykh sistem [Design of rocket and barrel systems]. Ed. By B. V. Orlov. Moscow, Mashinostroyeniye Publ., 1974, 828 p.
- Serebryakov M. E. Vnutrennyaya ballistika stvol'nykh sistem i porokhovykh raket [Internal ballistics of barrel systems and powder rockets]. Moscow, Oborongiz Publ., 1962, 703 p.
- Zaitsev A. S. Proyektirovaniye artilleriyskikh stvolov. Ch. II. Spetsial'nyye voprosy [Designing artillery barrels. P. II. Special questions]. Moscow, MC of the USSR on public education Publ., 1988, 114 p.
- Podkopaev A. V., Babadzhanov A. B., Podkopaev I. A., Dolzhikov V. I. [Identification and simulation mathematical model of thermo and physical loading of a small-caliber artillery barrel]. Sibirskiy aerokosmicheskiy zhurnal. 2022, Vol. 23, No. 2, P. 209–226 (In Russ.).
- Zarubin V. S., Stankevich I. V. Raschet teplonapryazhennykh konstruktsiy [Calculation of heatstressed structures]. Moscow, Mashinostroyeniye Publ., 2005, 352 p.
- Isachenko V. P., Osipova V. A., Sukomel A. S. Teploperedacha [Heat transfer]. Moscow, Energoizdat Publ., 1981, 416 p.
- Osnovy teploperedachi v aviatsionnoy i raketno-kosmicheskoy tekhnike [Fundamentals of heat transfer in aviation and rocket-space technology]. Ed. by V. K. Koshkin. Moscow, Mashinostroyeniye Publ., 1975, 624 p.
- Sapozhnikov S. V., Kitanin L. V. Tekhnicheskaya termodinamika i teploperedacha [Technical thermodynamics and heat transfer]. St. Petersburg, SPbSTU Publ., 1999, 319 p.
- Krayt F., Black W. Osnovy teploperedachi [Fundamentals of heat transfer]. Moscow, Mir Publ., 1983, 512 p.
- Leontiev A. I., Fafurin A. V. [Non-stationary turbulent layer in the initial section of the pipe]. Inzhenerno-fizicheskiy zhurnal. 1973, Vol. 25, No. 3, P. 14–19 (In Russ.).
- Gusev S. A., Nikolaev V. N. [Parametric identification of the thermal state of electronic equipment in the aircraft instrument compartment]. Sibirskiy zhurnal nauki i tekhnologiy. 2019, Vol. 20, No. 1, P. 62–67 (In Russ.).
- Cruz C., Marshall A. Surface and gas measurements along a film cooled wall. Thermophysics and Heat Transfer, 2007, No. 21. P. 181–189.
- Lobanov P. D., Usov E. V., Svetonosov A. I., Lezhnin S. I. [Analysis of experimental data on melting and movement of a metal melt over a cylindrical surface]. Teplofizika i aeromekhanika. 2020, No. 3, P. 483–490 (In Russ.).
- Vasiliev E. N. [Calculation of heat transfer characteristics of a ribbed wall]. Sibirskiy aerokosmicheskiy zhurnal. 2020, Vol. 21, No. 2, P. 226–232 (In Russ.).
- Zuev A. A., Arngold A. A., Khodenkova E. V. [Heat transfer in the field of centrifugal forces for elements of gas turbines]. Sibirskiy aerokosmicheskiy zhurnal. 2020, Vol. 21, No. 3, P. 364–376 (In Russ.).
- Ashurkov A. A., Lazovik I. N., Nikitenko Yu. V. [Study of the process of wear of barrels of pulsed heat engines of aviation weapons systems]. Мaterialy XIII Vseros. nauch.-tekhn. konf. “Problemy povysheniya boyevoy gotovnosti, boyevogo primeneniya, tekhnicheskoy ekspluatatsii i obespecheniya bezopasnosti poletov letatel'nykh apparatov s uchetom klimaticheskikh usloviy Sibiri, Zabaykal'ya i Dal'nego Vostoka” [Materials XIII All-Russ. Scient. and Technic. Conf. “Problems of increasing combat readiness, combat use, technical operation and ensuring flight safety of aircraft, taking into account the climatic conditions of Siberia, Transbaikalia and the Far East”]. Irkutsk, 2003, P. 97–100 (In Russ.).
- Danilenko R. A., Podkopaev A. V. [Synthesis of a mathematical model for the functioning of the “weapon-cartridge” system based on the solution of a quasi-linear non-stationary heat conduction equation]. Мaterialy V Vseros. nauch.-prakt. konf. “Akademicheskiye Zhukovskiye chteniya” [Materials V All-Russ. Scient. and Practic. Conf. “Academic Zhukovsky reading”]. Voronezh, 2018, P. 67–73 (In Russ.).
- Zakharchenko A. S., Ashurkov A. A., Lazovik I. N. [A method for assessing the survivability of aircraft artillery weapon barrels]. Мaterialy XIV Vseros. nauch.-prakt. konf. “Problemy povysheniya boyevoy effektivnosti raketno-artilleriyskogo vooruzheniya” [Materials XIV All-Russ. Scient. And Practic. Conf. “Problems of increasing the combat effectiveness of rocket and artillery weapons”]. Moscow, 2006, P. 28–35 (In Russ.).
- Podkopaev A. V., Gusev A.V. [Study of the possibility of refining the finite-difference scheme for solving multidimensional problems of heat conduction]. Мaterialy Vseros. nauch.-prakt. konf. “Innovatsii v aviatsionnykh kompleksakh i sistemakh voyennogo naznacheniya” [Materials All-Russ. Scient. and Practic. Conf. “Innovations in aviation complexes and military systems”]. Voronezh, 2009, P. 157–161 (In Russ.).
- Podkopaev A. V., Krainov N. F., Lazovik I. N., Morozov S. A. [Experimental studies of limiting thermal loads on the barrel of a rapid-firing gun]. Мaterialy XIII Vseros. nauch.-tekhn. konf. “Problemy povysheniya boyevoy gotovnosti, boyevogo primeneniya, tekhnicheskoy ekspluatatsii i obespecheniya bezopasnosti poletov letatel'nykh apparatov s uchetom klimaticheskikh usloviy Sibiri, Zabaykal'ya i Dal'nego Vostoka” [Materials XIII All-Russ. Scient. and Technic. Conf. “Problems of increasing combat readiness, combat use, technical operation and ensuring flight safety of aircraft, taking into account the climatic conditions of Siberia, Transbaikalia and the Far East”]. Irkutsk, 2003, P. 127–129 (In Russ.).
- Babadzhanov A. B., Podkopaev I. A., Podkopaev A. V., Dolzhikov V. I. [Combined mathematical model of internal and intermediate ballistics of aviation artillery weapons]. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskiye nauki. 2022, Rel. 4, P. 177–185 (In Russ.).
- GOST 4401–81. Atmosfera standartnaya. Parametry [GOST 4401–81. The atmosphere is standard. Options]. Moscow, Standartinform Publ., 2004, 180 р.
- Zadachnik po tekhnicheskoy termodinamike i teorii teplomassoobmena [Task book on technical thermodynamics and the theory of heat and mass transfer]. Ed. by V. I. Krutov and G. B. Petrazhitsky. St. Petersburg, BVH-Petersburg Publ., 2011, 384 p.
- Petukhov B. S., Roizen L. I. [Generalized dependences for heat transfer in pipes of an annular section]. Teplofizika vysokikh temperature. 1974, Vol. 12, No. 13, P. 31–34 (In Russ.).
- Petukhov B. S., Roizen L. I. [Heat transfer during turbulent gas flow in pipes with an annular cross section]. Izveshcheniye akademii nauk SSSR. Energetika i transport. 1967, No. 1, P. 8–14 (In Russ.).
- Petukhov B. S., Roizen L. I. [Experimental study of heat transfer during turbulent gas flow in pipes of an annular section]. Teplofizika vysokikh temperature. 1963, Vol. 1, No. 3, P. 19–24 (In Russ.).
- Galin N. M. [Heat transfer in turbulent flow of gases near rough walls]. Teploenergetika. 1967, No. 5, P. 11–14 (In Russ.).
- Norkin N. N., Chashchin S. V. [Investigation of heat transfer and hydrodynamic resistance in longitudinal flow around relatively short finned tubes]. Teploenergetika. 1963, No. 6, P. 42–51 (In Russ.).
- Miropolsky F. P., Morozov A. A., Pyriev E. V. Ballistika aviatsionnykh sredstv porazheniya. Ch. 1. Vnutrennyaya ballistika stvol'nykh sistem i raketnyye dvigateli tverdogo topliva [Ballistics of means of destruction. P. 1. Internal ballistics of barrel systems and solid propellant rocket engines]. Moscow, AFIA named after N. E. Zhukovsky Publ., 2008, 255 p.
- Podkopaev A. V. [Modus for determining the heat transfer coefficient for calculating the temperature field of the barrel of a rapid-firing artillery gun]. Мaterialy Vseros. nauch.-prakt. konf. “Sovremennoye sostoyaniye i perspektivy razvitiya letatel'nykh apparatov, ikh silovykh ustanovok i kompleksov aviatsionnogo vooruzheniya” [Materials All-Russ. Scient. and Practic. Conf. “The current state and prospects for the development of aircraft, their power plants and aviation weapons systems”]. Voronezh, 2012, P. 202–204 (In Russ.).