Modification with amino groups of composite SiO2-TiO2 and pure TiO2 spheres prepared via the peroxo route

Автор: Morozov R.S., Avdin V.V., Krivtsov I.V., Gorshkov A.A., Urzhumova A.V., Osinskaya A.V., Yuzhalkin D.S.

Журнал: Вестник Южно-Уральского государственного университета. Серия: Химия @vestnik-susu-chemistry

Рубрика: Физическая химия

Статья в выпуске: 3 т.10, 2018 года.

Бесплатный доступ

A series of porous composite SiO2-TiO2 and pure TiO2 spherical particles were prepared via the peroxo route and subsequently used as the support for catalyst. Aminopropyltrimethoxysilane (APTMS) was grafted to the surface of support in the strictly unhydrous media leading to bonding of free amino groups to the support surface covalently. Procedure of APTMS grafting is easy to perform and may be spread for grafting other different functional groups to the inorganic surfaces of the catalyst support. The support samples were calcined at various temperatures in order to optimize the preparation conditions and boost the density of surface amino groups. It has been found that the quantity of grafted APTMS varies insignificantly for the different support samples. Grafted amino groups would be applied as active catalytic sites in different reactions of organic chemistry such as acylation of amines and alcohols, polymerization of lactones with hydroxyl groups, isomerization of unsaturated compounds, aldol condensation, Diels-Alder, Michael, Knoevenagel reactions. The mechanisms of reaction activation by amino groups are the transfer of electron density to a reacting molecule and formation of an intermediate complex. While widely applied catalysts are liquid amines, it is desirable to transform these substances into the heterogeneous form for better regeneration and purification of reaction products from the initial reagents. Prepared catalysts exhibit high amino groups load equal to 1 mmol/g, taking into account the localization of amino groups on the surface of the catalyst.

Еще

Peroxo method, sio2, tio2, aptms, amino groups, base catalysis

Короткий адрес: https://sciup.org/147233099

IDR: 147233099   |   DOI: 10.14529/chem180303

Список литературы Modification with amino groups of composite SiO2-TiO2 and pure TiO2 spheres prepared via the peroxo route

  • Nelson S.G., Zhu C., Shen X. Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes. Journal of American Chemical Society, 2004, vol. 126, pp. 14-15. DOI: 10.1021/ja0391208
  • Denmark S.E., Beutner G.L. Lewis Base Catalysis in Organic Synthesis. Angewandte Chemie - International Edition, 2008, vol. 47, no. 9, pp. 1560-1638. DOI: 10.1002/anie.200604943
  • Cameron L.L., Wang S.C., Kluger R. Biomimetic Monoacylation of Diols in Water. Lanthanide-Promoted Reactions of Methyl Benzoyl Phosphate. Journal of the American Chemical Society, 2004 vol. 126, № 34, pp. 10721-10726. DOI: 10.1021/ja049538l
  • Coulembier O., Mespouille L., Hedrick J.L., Waymouth R.M., Dubois P. Metal-free Catalyzed Ring-Opening Polymerization of β-Lactones: Synthesis of Amphiphilic Triblock Copolymers Based on Poly(DimethylmalicAcid). Macromolecules, 2006, vol. 39, no. 12, pp. 4001-4008. DOI: 10.1021/ma060552n
  • Trost B. M., Kazmaier U. Internal Redox Catalyzed by Triphenylphosphine. Journal of Americal Chemical Society,1992, vol. 114, № 20, pp 7933-7935. DOI: 10.1021/ja00046a062
  • Nakagawa T., Fujisawa H., Nagata Y., Mukaiyama T. Lithium Acetate-Catalyzed Aldol Reaction between Aldehyde and Trimethylsilyl Enolate in Anhydrous or Water-Containing N,N-Dimethylformamide. Bulletin of the Chemical Society of Japan, 2004, vol. 77, pp. 1555-1557.
  • DOI: 10.1246/bcsj.77.1555
  • Suttibut C., Kohari Y., Igarashi K., Nakano H., Hirama M., Seki C., Matsuyama H., Uwai K., Takano N., Okuyama Y., Osone K., Takeshita M., Kwon E. A Highly Enantioselective Diels-Alder Reaction of 1,2-Dihydropyridine Using a Simple β-Amino Alcohol Organocatalyst for a Practical Synthetic Methodology of Oseltamivir Intermediate. Tetrahedron Letters, 2011, vol. 52, № 37, pp. 4745-4748.
  • DOI: 10.1016/j.tetlet.2011.06.109
  • Knudsen K.R., Mitchell C.E.T., Ley S. V. Asymmetric OrganocatalyticConjugate Addition of Malonates to EnonesUsing a Proline Tetrazole Catalyst. Chemical Communications, 2006, pp. 66-68.
  • DOI: 10.1039/b514636d
  • Ramachary D.B., Anebouselvy K., Chowdari N.S., Barbas C.F. III Direct Organocatalytic Asymmetric Heterodomino Reactions: The Knoevenagel/Diels-Alder/Epimerization Sequence for the Highly Diastereoselective Synthesis of Symmetrical and Nonsymmetrical Synthons of Benzoannelated Centropolyquinanes. Journal of Organic Chemistry, 2004, vol. 69, pp. 5838-5849.
  • DOI: 10.1021/jo049581r
  • Bagheri S., MuhdJulkapli N., Bee Abd Hamid S. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis. The Scientific World Journal, 2014, Volume 2014, Article ID 727496.
  • DOI: 10.1155/2014/727496
  • Sahoo S., Bordoloi A., Halligudi S.B. Ordered Mesoporous Silica as Supports in the Heterogeneous Asymmetric Catalysts. Catalysis Surveys from Asia, 2011, vol. 15, № 3, pp. 200-214.
  • DOI: 10.1007/s10563-011-9122-z
  • Schlögl R. Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2015, vol. 54, № 11, pp. 3465-3520.
  • DOI: 10.1002/anie.201410738
  • Morozov R., Krivtsov I., Avdin V., Amghouz Z., Khainakov S.A., García J.R. PeroxoMethod for Preparation of Composite Silica-Titania Spheres. Journal of Non-Crystalline Solids, 2016, vol. 435, pp. 8-16.
  • DOI: 10.1016/j.jnoncrysol.2015.12.024
  • Morozov R., Krivtsov I., Avdin V., Amghouz Z., Gorshkov A., Pushkova E., Bol'shakov O., Bulanova A., Ilkaeva M. Microporous Composite SiO2-TiO2 Spheres Prepared via the Peroxo Route: Lead(II) Removal in Aqueous Media. Journal of Non-Crystalline Solids, 2017, article in press.
  • DOI: 10.1016/j.jnoncrysol.2017.11.031
  • Valkenberg M.H., Hölderich W.F. Preparationand Use of Hybrid Organic-Inorganic Catalysts. Catalysis Reviews - Science and Engineering, 2002, vol. 44, № 2, pp. 321-374.
  • DOI: 10.1081/CR-120003497
  • Etienne M., Walcarius A. Analytical Investigation of the Chemical Reactivity and Stability of Aminopropyl-Grafted Silica in Aqueous Medium. Talanta, 2003, vol. 59, № 6, pp. 1173-1188.
  • DOI: 10.1016/S0039-9140(03)00024-9
  • Zhuravlev L.T. Concentration of Hydroxyl Groups on the Surface of Amorphous Silicas. Langmuir, 1987, vol. 3, № 3, 316-318.
  • DOI: 10.1021/la00075a004
  • Bukleski M., Ivanovski V., Hey-Hawkins E.A Direct Method of Quantification of Maximal Chemisorption of 3-Aminopropylsilyl Groups on Silica Gel Using DRIFT Spectroscopy. SpectrochimicaActa - Part A: Molecular and Biomolecular Spectroscopy, 2015, vol. 149, pp. 69-74.
  • DOI: 10.1016/j.saa.2015.04.026
  • Palimi M.J., Rostami M., Mahdavian M., Ramezanzadeh B. Surface Modification of Cr2O3Nanoparticles with 3-Amino propyl Trimethoxysilane (APTMS). Part 1: Studying the Mechanical Properties of Polyurethane/Cr2O3 Nanocomposites. Progress in Organic Coatings, 2014, vol. 77, pp. 1663-1673.
  • DOI: 10.1016/j.porgcoat.2014.05.010
  • Zhao Q., Bai C., Zhang W., Li Y., Zhang G., Zhang F., Fan X. Catalytic Epoxidation of Olefins with Graphene Oxide Supported Copper (Salen) Complex. Industrial and Engineering Chemistry Research, 2014, vol. 53, № 11, pp. 4232-4238.
  • DOI: 10.1021/ie500017z
  • Wang Y.M., Liu S.W., Xiu, Z., Jiao X.B., Cui X.P., Pan J. Preparation and Photocatalytic Properties of Silica Gel-Supported TiO2. Materials Letters, 2006, vol. 60. pp. 974-978.
  • DOI: 10.1016/j.matlet.2005.10.061
  • Fellenz N., Martin P., Marchetti S., Bengoa F. Aminopropyl-Modified Mesoporous Silica Nanospheres for the Adsorption of Cr(VI) from Water. Journal of Porous Materials, 2015, vol. 22, № 3, pp. 729-738.
  • DOI: 10.1007/s10934-015-9946-4
  • Gianotti E., Dellarocca V., Marchese L., Martra G., Coluccia S., Maschmeyer T. NH3 Adsorption on MCM-41 and Ti-grafted MCM-41. FTIR, DR UV-Vis-NIR and Photoluminescence Studies. Physical Chemistry Chemical Physics, 2002, vol. 4, № 24, pp. 6109-6115.
  • DOI: 10.1039/b207231a
  • Jain A., Hirata G.A., Farías M.H., Castillón F.F. Synthesis and Characterization of (3-Aminopropyl)trimethoxy-silane (APTMS) Functionalized Gd2O3: Eu3 Red Phosphor with Enhanced Quantum Yield. Nanotechnology, 2016, vol. 27, № 6, Article ID 065601.
  • DOI: 10.1088/0957-4484/27/6/065601
  • Lim M.H., Stein A. Comparative Studies of Grafting and Direct Syntheses of Inorganic-Organic Hybrid Mesoporous Materials. Chemistry of Materials, 1999, vol. 11, № 11, pp. 3285-3295.
  • DOI: 10.1021/cm990369r
  • Bereznitski Y., Jaroniec M., Kruk M., Buszewski B. Adsorption Characterization of Octyl Bonded Phases for High Performance Liquid Chromatography. Journal of Liquid Chromatography and Related Technologies, 1996, vol. 19, № 17-18, pp. 2767-2784.
  • DOI: 10.1080/10826079608015109
  • Jaroniec C.P., Gilpin R.K., Jaroniec M. Adsorption and Thermogravimetric Studies of Silica-Based Amide Bonded Phases. Journal of Physical Chemistry B, 1997, vol. 101, № 35, pp. 6861-6866.
  • DOI: 10.1021/jp964002a
  • López-Aranguren P., Fraile J., Vega L.F., Domingo C. Regenerable Solid CO2 Sorbents Prepared by Supercritical Grafting of Aminoalkoxysilane into Low-Cost Mesoporous Silica. The Journal of Supercritical Fluids, 2014, vol. 85, pp. 68-80.
  • DOI: 10.1016/j.supflu.2013.10.020
Еще
Статья научная