Модифицирование поверхности углеродной нанотрубки оксидом меди для применения в газочувствительных системах: теоретическое исследование
Автор: Борознин С.В., Запороцков П.А., Тимникова В.А., Черняев А.В.
Журнал: НБИ технологии @nbi-technologies
Рубрика: Нанотехнологии и наноматериалы
Статья в выпуске: 3 т.18, 2024 года.
Бесплатный доступ
В настоящей работе с использованием теории функционала плотности (DFT) исследовались процессы адсорбции оксида меди (CuO) на поверхности углеродных нанотрубок типа (6,6). Определено наиболее энергетически благоприятное положение атома CuO относительно нанотрубки. Проанализировано распределение заряда в оптимизированных комплексах и охарактеризованы электронные свойства системы «углеродная нанотрубка - оксид меди». Полученные результаты свидетельствуют о том, что процессы адсорбции приводят к изменению электронных и зарядовых характеристик рассматриваемого композитного материала.
Нанотрубки, модификация, ширина запрещенной зоны, адсорбция, метан, углекислый газ
Короткий адрес: https://sciup.org/149147568
IDR: 149147568 | DOI: 10.15688/NBIT.jvolsu.2024.3.1
Список литературы Модифицирование поверхности углеродной нанотрубки оксидом меди для применения в газочувствительных системах: теоретическое исследование
- Boroznina N.P., Zaporotskova I.V, Boroznin S.V Sensitivity of Carboxyl-Modified Carbon Nanotubes to Alkaline Metals. Nanosystems: Physics, Chemistry, Mathematics, 2018, vol. 9, no. 1, pp. 79-84. DOI: 10.17586/2220-8054-2018-9-1-79-84
- Nasrollahzadeh M., Sajjadi M., Iravani S., Varma R.S. Carbon-Based Sustainable Nanomaterials for Water Treatment: State-of-Art and Future Perspectives. Chemosphere, 2020, vol. 263, p. 128005. DOI: 10.1016/j. chemosphere.2020. 128005
- Ebbesen T.W., Lezec H., Hiura H., Bennett J.W., Ghaemi H.F., Thio T. Electrical Conductivity of Individual Carbon Nanotubes. Nature, 1996, vol. 382, no. 6586, pp. 54-56. DOI: 10.1038/382054a0
- Abdulhameed A., Zuraihan N., Mohtar M.N., hamidon M.N., Shafie S., Halin I.A. Methods and Applications of Electrical Conductivity Enhancement of Materials Using Carbon Nanotubes. Journal of Electronic Materials, 2021, vol. 50, pp. 1-15. DOI: 10.1007/s11664-021-08928-2
- Yu M.F., Lourie O., Dyer M.J., Moloni K., Kelly T.F., Ruoff R. Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science, 2020, vol. 287, pp. 637-640. DOI: 10.1126/ science.287.5453.637
- Ahmadi M., Zabihi O., Masoomi M., Naebe M. Synergistic Effect of MWCNTs Functionalization on Interfacial and Mechanical Properties of Multi-Scale UHMWPE Fibre Reinforced Epoxy Composites. Composites Science and Technology, 2016, vol. 134, pp. 1-11. DOI: 10.1016/ j. compscitech.2016.07.026
- Hernandez E., Goze C., Bernier P., Rubio A. Elastic Properties of C and BxCyNz Composite Nanotubes. Physics Review Letters, 1998, vol. 80, p. 4502. DOI: 10.1103/PhysRevLett.80.4502
- Zhu S., Sheng J., Chen Y., Ni J., Li Y. Carbon Nanotubes for Flexible Batteries: Recent Progress and Future Perspective. National Science Review, 2020, vol. 8, no. 5, pp. 1-17. DOI: 10.1093/nsr/nwaa261
- Wan H., Cao Y., Lo L.-W., Zhao J., Sepu et al. Flexible Carbon Nanotube Synaptic Transistor for Neurological Electronic Skin Applications. ACS nano, 2020, vol. 14, no. 8, pp. 10402-10412. DOI: 10.1021/ acsnano.0c04259
- Sun X., Zhihui Q., Ye L., Zhang H., Yu Q., Wu X., Li J., Yao F. Carbon Nanotubes Reinforced Hydrogel as Flexible Strain Sensor with High Stretchability and Mechanically Toughness. Chemical Engineering Journal, 2020, vol. 382, p. 122832. DOI: 10.1016/j.cej.2019.122832
- Qu T.-Y. et al. A Flexible Carbon Nanotube SenMemory Device. Advanced Materials, 2020, vol. 32, no. 9, p. 1907288.
- Ajayan P., Zhou O. Applications of Carbon Nanotubes. Engineering, Materials Science, Physics, 2001, pp. 391-425. DOI: 10.1007/3-540-39947-X_14
- De Voider M., Tawfick S., Baughman R., Hart A.J. Carbon Nanotubes: Present and Future Commercial Applications. Science, 2013, vol. 339, no. 6119, pp. 535-539. DOI: 10.1126/science.1222453
- Boroznina N.P., Zaporotskova I.V., Zaporotskov P.A. Nanofilters Based on Carbon Nanomaterials for Cleaning Liquids. "Smart Technologies" for Society, State and Economy, 2021, pp. 297-306. DOI: 10.1007/978-3-030-59126-7_33
- Ma Y., Shen X.L., Zeng Q., Wang H.-S., Wang L.-S. A Multi-Walled Carbon Nanotubes Based Molecularly Imprinted Polymers Electrochemical Sensor for the Sensitive Determination of HIV-p24. Talanta, 2017, vol. 164, pp. 121-127. DOI: 10.1016/ j.talanta.2016.11.043
- Cabral D.G.A., Lima E.C.S.,MouraP, DutraR.F. A Label-Free Electrochemical Immunosensor for Hepatitis B Based on Hyaluronic Acid-Carbon Nanotube Hybrid Film. Talanta, 2016, vol. 148, pp. 209215. DOI: 10.1016/j.talanta.2015.10.083
- Tian J., Wang D., Zheng Y, Jing T. A High Sensitive Electrochemical Avian Influenza Virus H7 Biosensor Based on CNTs/MoSx Aerogel. International Journal of Electrochemical Science, 2017, vol. 12, no. 4, pp. 2658-2668. DOI: 10.20964/ 2017.04.30
- Pandhi T., Chandani A., Subbaraman H., Estrada D. A Review of Inkjet Printed Graphene and Carbon Nanotubes Based Gas Sensors. Sensors, 2020, vol. 20, no. 19, p. 5642. DOI: 10.3390/s20195642
- Ahmad Z., Manzoor S., Talib M., Islam S., Mishra P. Self-Standing MWCNTs Based Gas Sensor for Detection of Environmental Limit of CO2. Materials Science and Engineering: B, 2020, vol. 255, p. 114528. DOI: 10.1016/j.mseb.2020.114528
- Ghodrati M., Mir A., Farmani A. Carbon Nanotube Field Effect Transistors-Based Gas Sensors. Nanosensorsfor Smart Cities, 2019, pp. 171-183. DOI: 10.1016/B978-0-12-819870-4.00036-0
- Naqvi S.T.R., Rasheed T., Hussain D., Najam-ul-Haq M., Majeed S., Shafi S., Ahmed N., Nawaz R. Modification Strategies for Improving the Solubility/ Dispersion of Carbon Nanotubes. Journal of Molecular Liquids, 2019, vol. 297, p. 111919. DOI: 10.1016/j.molliq.2019.111919
- Chen Q., Saltiel C., Manickavasagam S., Schadler L.S., Siegel R.W., Yang H. Aggregation Behavior of Single-Walled Carbon Nanotubes in Dilute Aqueous Suspension. Journal of Colloid and Interface Science, 2004, vol. 280, no. 1, pp. 91-97. DOI: 10.1016/j.jcis.2004.07.028
- Moreira L., Fulchiron R., Seytre G., Dubois P., Cassagnau P. Aggregation of Carbon Nanotubes in Semidilute Suspension. Macromolecules, 2010, vol. 43, no. 3, pp. 1467-1472. DOI: 10.1021/ma902433v
- Dubey R., Dutta D, Sarkar A., Cattopadhyay P. Functionalized Carbon Nanotubes: Synthesis, Properties and Applications in Water Purification, Drug Delivery, and Material and Biomedical Sciences. Nanoscale Advances, 2021, vol. 3, no. 20, pp. 5722-5744. DOI: 10.1039/D1NA00293G
- Norizan M.N., Harussani M.M., Demon S.Z.N., Halim N.A., Samsuri A., Mohamed I.S., Feizal V., Abdullah N. Carbon Nanotubes: Functionalisation and Their Application in Chemical Sensors. RSC advances, 2020 vol. 10, no. 71, pp. 4370443732. DOI: 10.1039/d0ra09438b
- Murugadoss G., Salla S., Kumar M.R., Kandhasamy N., Garalleh H., Garaleh M., Kathirvel B., Pugazhendhi A. Decoration of ZnO Surface with Tiny Sulfide-Based Nanoparticles for Improve Photocatalytic Degradation Efficiency. Environmental Research, 2023, vol. 220, p. 115171. DOI: 10.1016/ j.envres.2022.115171
- Mallakpour S., Khadem E. Carbon Nanotube-Metal Oxide Nanocomposites: Fabrication, Properties and Applications. Chemical Engineering Journal, 2016, vol. 302, pp. 344-367. DOI: 10.1016/ j.cej.2016.05.038
- Espinosa E.H., Ionescu R., Chambon B., Bedis G., Sotter E., Bittencourt C. Felten A., Correig X., Llobet E. Hybrid Metal Oxide and Multiwall Carbon Nanotube Films for Low Temperature Gas Sensing. Sensors and Actuators B: Chemical, 2007, vol. 127, no. 1, pp. 137-142. DOI: 10.1016/j.snb.2007.07.108
- Liu H., Ma H., Zhou W., Liu W., Jie Z., Li X. Synthesis and Gas Sensing Characteristic Based on Metal Oxide Modification Multi Wall Carbon Nanotube Composites. Applied Surface Science, 2012, vol. 258, no. 6, pp. 1991-1994. DOI: 10.1016/j.apsusc.2011.05.081
- Septiani N.L.W., Yuliarto B. The Development of Gas Sensor Based on Carbon Nanotubes. Journal of The Electrochemical Society, 2016, vol. 163, no. 3, pp. B97-B106. DOI: 10.1149/ 2.0591603jes
- Elnabawy H.M., Casanova-ChaferJ J., Anis B., Fedawy M., Scardamaglia M., Bittencourt C., Khalil A.S.G., Llobet E., Vilanova X. Wet Chemistry Route for the Decoration of Carbon Nanotubes with Iron Oxide Nanoparticles for Gas Sensing. Beilstein Journal of Nanotechnology, 2019, vol. 10, no. 1, pp. 105-118. DOI: 10.3762/bjnano. 10.10
- GuoT., Zhou T., Tan Q., Guo Q., Lu F., Xiong J. A Room-Temperature CNT/Fe3O4 Based Passive Wireless Gas Sensor. Sensors, 2018, vol. 18, no. 10, p. 3542. DOI: 10.3390/s18103542