Molecular responses of groundnut ( Arachis hypogea L.) to zinc stress

Автор: John De britto A., Leon Stephan raj T., Sutha M.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.9, 2013 года.

Бесплатный доступ

Heavy metals are important environmental pollutants and their toxicity is a problem of increasing significance for ecological, evolutionary and environmental reasons. The interference of germination related proteins by heavy metals has not been well documented at the proteomic and genomic level. In the current study, molecular responses of germinating groundnut seeds were investigated under Zinc stress. The SDS-PAGE showed the preliminary changes in the polypeptides patterns under Zinc stress. Restriction digestion banding pattern of EcoRI and Hind III enzymes showed distinct banding pattern in the treated plants.

Heavy metal stress, arachis hypogea l, sds- page - polypeptides, restriction enzymes

Короткий адрес: https://sciup.org/14323761

IDR: 14323761

Список литературы Molecular responses of groundnut ( Arachis hypogea L.) to zinc stress

  • Barque, J. P., Abahamid, A., Chacun, H. and Bonaly, J. (1996) Different heat-shock proteins are constitutively overexpressed in cadmium and pentachlorophenol adapted Euglena gracilis cells. Biochemical and Biophysical Research Communications 223: 7-11.
  • Bukau, B. A. and Horwich, A. L. (1998) The Hsp 70 and Hsp 60 chaperone machines. Cell, 92: 351-366.
  • Cai, L. and Cherian, G. (2003) Zinc-metallothionein protects from DNA damage induced by radiation better than glutathione and Cu-or Cd-metallothioneins. Toxicol Lett., 136: 193-198.
  • Ciesieslska, A. S., Stachura, A., Sbotwinska, M., Kamibska, T., Sniezka, R., Paduch, R., Abramczyk, D., Filar, J. and Szerszen, M. K. (2000) The inhibitory effect of zinc on cadmium-induced cell apoptosis and Reactive Oxygen Species (ROS) production in cell cultures. Toxicology, 145: 159-171.
  • Cobbett, C. S. (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiology, 123: 825-832.
  • Doyle, J. J. and Doyle, J. L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull., 19: 11-15.
  • Knight Ch, A. S. and Ackerly, D. D. (2001) Correlated evolution of chloroplast heat shock protein expression in closely related plant species. Amer. J. Botany., 88: 411-418.
  • Lammelli, U. K. (1970) Cleavage of structural proteins. during the assembly of the head of the bacteriophage T4. Nature, 227: 680.
  • Lowry, O. H., Rose Brough, Fan, N. J. and Randall, R. J. (1951) Protein measurement with the Folin-phenol reagent. J. Bio. Chem., 193: 265-272.
  • Morimoto, R. I. (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones and negative regulators. Genes. Dev., 12: 3788-3796.
  • Rampitsch Ch and Srinivasan, M. (2006) The application of proteomics to plant biology: a review. Can. J.Bot., 4: 883-892.
  • Sambrook and Russell. (2000) Molecular cloning: A laboratory manual. Third Edition.Vol 1. Cold Spring Harbors Laboratory Press, Cold Spring Harbor, New York, USA.
  • Vierling, E. (1991) The roles of heat shock proteins in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol., 32: 579-620.
  • Vinocur, B. and Altman, A. (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitation. Current Opinion in Biotechnology, 6: 123-132.
  • Wollgiehn, R. and Neumann, D. (1999) Metal stress response and tolerance of cultured cells from Silene vulgaris and Lycopersicon peruvian-um: role of heat stress proteins. Journal of Plant Physiology, 154: 547-553.
  • Zenk, M. H. (1996) Heavy metal detoxification in higher plants-a review. Gene, 179: 21.
Еще
Статья научная