Morphophysiological and biochemical changes in calli of various winter triticale (x Triticosecale wittmack) varieties under salinization
Автор: Lagmetova N.A., Alieva Z.M., Kurkiev K.U., Gadjimagomedova M.Kh.
Журнал: Сельскохозяйственная биология @agrobiology
Рубрика: Улучшение сортов растений
Статья в выпуске: 3 т.59, 2024 года.
Бесплатный доступ
Studies of the salt resistance of ½ Triticosecale Wittmack and the identification of optimal cultivars in this regard are relevant due to the widespread saline soils in the areas where this crop is grown. Biotechnological methods attract attention among the methods for assessing salt resistance, however, they have practically not been developed for triticale, and the varietal specificity of its response to salinity in vitro has not been sufficiently studied. This work for the first time submits data on the dependence of callus formation, crude and dry biomass, the accumulation of proline in callus tissues and the intensity of lipid peroxidation on the 0.5, 0.75 and 1 % NaCl in the nutrient medium. In addition, we revealed the varietal specific changes in these indicators under salinization in winter triticale samples. The aim of the work was to study the effect of different levels of NaCl salinity on morphophysiological and biochemical changes in in vitro calluses of five winter triticale varieties. Mature embryos of grain samples of winter triticale Triskell, Sotnik, PRAG530l-1934, Timbo and Almaz (the collection of the Dagestan Experimental Station, a branch of the FRC Vavilov All-Russian Institute of Plant Genetic Resources) were used. To initiate in vitro culture, grains were sequentially sterilized for 30 s in 96 % ethanol and 20 min in the commercial preparation Belizna, and then washed 3 times for 5 min with sterile distilled water. The embryos isolated from grains were placed with a cut down on a nutrient medium to form a callus. Four variants of the Murashige-Skuga nutrient medium (MS) differed in NaCl concentration were MS added with 2,5 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) and 0,5 mg/l 6-benzylaminopurine (BAP) (MS1, control); MS + 2,4-D + BAP + 0.5 % NaCl (MS2); MS + 2,4-D + BAP + 0.75 % NaCl (MS3); MS + 2,4-D + BAP + 1 % NaCl (MS4). Mature embryos were cultures on nutrient media for 30 days in a climatic chamber (MLR-352H, Sanyo, Japan, a 16-hour photoperiod, 24±1 °C, illumination of 3000 lux and humidity of 80 %). The size of calluses, the growth of raw and dry biomass, the accumulation of free proline, and the intensity of lipid peroxidation (LP) were determined. In the experiments, the Timbo and Almaz cultivars showed the greatest sensitivity to salinity in vitro and produced calli only at a low NaCl concentration (0.5 %). The cultivars Sotnik and PRAG530l-1934 withstood an average salinity level (0.75 % NaCl). The Triskell sample turned out to be resistant, since callus formation occurred even at 1% NaCl). Sodium chloride added at a concentration of 0.75 % led to a decrease in the callus size of the Triskell, Sotnik and PRAG530l-1934 cultivars by 1.8, 1.9 and 2 times, respectively, vs. the control (р function show_eabstract() { $('#eabstract1').hide(); $('#eabstract2').show(); $('#eabstract_expand').hide(); }
Triticosecale wittmack, triticale, callus, salt tolerance, chloride salinization, in vitro
Короткий адрес: https://sciup.org/142242459
IDR: 142242459 | DOI: 10.15389/agrobiology.2024.3.525rus