Morphological heterogeneity of intratumoral macrophages in prostate tumors

Автор: Danilko K.V., Enikeeva K.I., Kabirov I.R., Maksimova S.Y., Vishnyakov D.S., Kzhyshkowska J.G., Pavlov V.N.

Журнал: Сибирский онкологический журнал @siboncoj

Рубрика: Лабораторные и экспериментальные исследования

Статья в выпуске: 6 т.21, 2022 года.

Бесплатный доступ

Background. Prostate cancer (PCa) is the most common human cancer worldwide. in the progression of prostate cancer, the total number of macrophages in the tumor tissue is associated with poor prognosis and increased risk of metastasis. However, the heterogeneity of intratumoral macrophages at various stages of PCa development, and the role of tumor-associated macrophages (TAMs) have been insufficiently investigated. The aim of the study was to analyze the morphological features, size and number of TAMs in PCa tissue samples, and to reveal their correlation with clinical data of patients. Material and Methods. immunohistochemical analysis of 36 paraffin blocks of patients with PCa (pT2a-3bN0-1M0) was performed using antibodies to the scavenger receptor CD68. Results. Foamy CD68+ macrophages were found in the tumor tissue. The indicator "number of macrophages per total number of fields of view with macrophages" was the lowest in patients with a Gleason score of 6 (5.8) (11.0 - in patients with a Gleason score > 8). Macrophages formed larger clusters in patients with severe PCa. Small but not large macrophages were significantly more common in patients with lymph node metastases (48 vs 24 in the N0 group; p=0.14). The number of small macrophages (smaller than 100 pm2) increased in a series of patients with Gleason scores of 6, 7 and > 8 (24, 47.5, 72, respectively, p=0.052). Conclusion. As the tumor process progressed and the risk of biochemical recurrence increased, there was a trend towards an increase in the total area of large, foamy TAMs, presumably rich in lipids, as well as wider distribution of small macrophages with a tendency to form clusters. We hypothesize that foamy macrophages are involved in the further recruitment of small TAMs, subsequently leading to metastasis and tumor progression.

Еще

Prostate cancer, tumor-associated macrophages, giant macrophages, tumor progression

Короткий адрес: https://sciup.org/140296697

IDR: 140296697   |   DOI: 10.21294/1814-4861-2022-21-6-81-90

Список литературы Morphological heterogeneity of intratumoral macrophages in prostate tumors

  • Torre L.A., Bray F., Siegel R.L., Ferlay J., Lortet-Tieulent J., Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015; 65(2): 87-108. https://doi.org/10.3322/caac.21262.
  • Global Burden of Disease Cancer Collaboration, Fitzmaurice C., Abate D., Abbasi N., Abbastabar H., Abd-Allah F., Abdel-Rahman O., Abdelalim A., Abdoli A., Abdollahpour I., Abdulle A.S.M., Abebe N.D., Abraha H.N., Abu-Raddad L.J., at al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019; 5(12): 1749-68. https://doi.org/10.1001/jamaoncol.2019.2996. Erratum in: JAMA Oncol. 2020; 6(3): 444. Erratum in: JAMA Oncol. 2020; 6(5): 789. Erratum in: JAMA Oncol. 2021; 7(3): 466.
  • Steele C.B., Li J., Huang B., Weir H.K. Prostate cancer survival in the United States by race and stage (2001-2009): Findings from the CONCORD-2 study. Cancer. 2017; 123 (Suppl 24): 5160-77. https://doi.org/10.1002/cncr.31026.
  • Sfanos K.S., Yegnasubramanian S., Nelson W.G., De Marzo A.M. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol. 2018; 15(1): 11-24. https://doi.org/10.1038/nrurol.2017.167.
  • Patysheva M., Larionova I., Stakheyeva M., Grigoryeva E., Iamshchikov P., Tarabanovskaya N., Weiss C., Kardashova J., Frolova A., Rakina M., Prostakishina E., Zhuikova L., Cherdyntseva N., Kzhyshkowska J. Efect of Early-Stage Human Breast Carcinoma on Monocyte Programming. Front Oncol. 2022; 11. https://doi.org/10.3389/fonc.2021.800235.
  • Patysheva M., Frolova A., Larionova I., Afanas’ev S., Tarasova A., Cherdyntseva N., Kzhyshkowska J. Monocyte programming by cancer therapy. Front Immunol. 2022; 13. https://doi.org/10.3389/fmmu.2022.994319.
  • Larionova I., Tuguzbaeva G., Ponomaryova A., Stakheyeva M., Cherdyntseva N., Pavlov V., Choinzonov E., Kzhyshkowska J. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front Oncol. 2020; 10. https://doi.org/10.3389/fonc.2020.566511.
  • Kzhyshkowska J., Neyen C., Gordon S. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology. 2012; 217(5): 492-502. https://doi.org/10.1016/j.imbio.2012.02.015.
  • Krawczyk K.M., Nilsson H., Allaoui R., Lindgren D., Arvidsson M., Leandersson K., Johansson M.E. Papillary renal cell carcinoma-derived chemerin, IL-8, and CXCL16 promote monocyte recruitment and diferentiation into foam-cell macrophages. Lab Invest. 2017; 97(11): 1296-305. https://doi.org/10.1038/labinvest.2017.78.
  • Corn K.C., Windham M.A., Rafat M. Lipids in the tumor microenvironment: From cancer progression to treatment. Prog Lipid Res. 2020; 80. https://doi.org/10.1016/j.plipres.2020.101055.
  • Wu H., Han Y., Rodriguez Sillke Y., Deng H., Siddiqui S., Treese C., Schmidt F., Friedrich M., Keye J., Wan J., Qin Y., Kühl A.A., Qin Z., Siegmund B., Glauben R. Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol Med. 2019; 11(11). https://doi.org/10.15252/emmm.201910698.
  • Zhang Y., Sun Y., Rao E., Yan F., Li Q., Zhang Y., Silverstein K.A., Liu S., Sauter E., Cleary M.P., Li B. Fatty acid-binding protein E-FABP restricts tumor growth by promoting IFN-β responses in tumor-associated macrophages. Cancer Res. 2014; 74(11): 2986-98. https://doi.org/10.1158/0008-5472.CAN-13-2689.
  • Zhang Q., Wang H., Mao C., Sun M., Dominah G., Chen L., Zhuang Z. Fatty acid oxidation contributes to IL-1β secretion in M2 macrophages and promotes macrophage-mediated tumor cell migration. Mol Immunol. 2018; 94: 27-35. https://doi.org/10.1016/j.molimm.2017.12.011.
  • Chiba S., Hisamatsu T., Suzuki H., Mori K., Kitazume M.T., Shimamura K., Mizuno S., Nakamoto N., Matsuoka K., Naganuma M., Kanai T. Glycolysis regulates LPS-induced cytokine production in M2 polarized human macrophages. Immunol Lett. 2017; 183: 17-23. https://doi.org/10.1016/j.imlet.2017.01.012.
  • Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization. Front Biosci. 2008; 13: 453-61. https://doi.org/10.2741/2692.
  • Kzhyshkowska J., Yin S., Liu T., Riabov V., Mitrofanova I. Role of chitinase-like proteins in cancer. Biol Chem. 2016; 397(3): 231-47. https://doi.org/10.1515/hsz-2015-0269.
  • Larionova I.V., Sevastyanova T.N., Rakina A.A., Cherdyntseva N.V., Kzhyshkowska J.G. Chitinase-like proteins as promising markers in cancer patients. Siberian Journal of Oncology. 2018; 17(4): 99-105. https://doi.org/10.21294/1814-4861-2018-17-4-99-105.
  • Larionova I., Kazakova E., Gerashchenko T., Kzhyshkowska J. New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis. Cancers (Basel). 2021; 13(13): 3253. https://doi.org/10.3390/cancers13133253.
  • Larionova I., Kazakova E., Patysheva M., Kzhyshkowska J. Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages. Cancers (Basel). 2020; 12(6): 1411. https://doi.org/10.3390/ cancers12061411.
  • Dirat B., Bochet L., Dabek M., Daviaud D., Dauvillier S., Majed B., Wang Y.Y., Meulle A., Salles B., Le Gonidec S., Garrido I., Escourrou G., Valet P., Muller C. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011; 71(7): 2455-65. https://doi.org/10.1158/0008-5472.CAN-10-3323.
  • Rakina M.A., Kazakova E.O., Sudaskikh T.S., Bezgodova N.V., Villert A.B., Kolomiets L.A., Larionova I.V. Giant foam-like macrophages in advanced ovarian cancer. Siberian Journal of Oncology. 2022; 21(2): 45-54. https://doi.org/10.21294/1814-4861-2022-21-2-45-54.
  • Kratz M., Coats B.R., Hisert K.B., Hagman D., Mutskov V., Peris E., Schoenfelt K.Q., Kuzma J.N., Larson I., Billing P.S., Landerholm R.W., Crouthamel M., Gozal D., Hwang S., Singh P.K., Becker L. Metabolic dysfunction drives a mechanistically distinct proinfammatory phenotype in adipose tissue macrophages. Cell Metab. 2014; 20(4): 614-25. https://doi.org/10.1016/j.cmet.2014.08.010.
  • Tiwari P., Blank A., Cui C., Schoenfelt K.Q., Zhou G., Xu Y., Khramtsova G., Olopade F., Shah A.M., Khan S.A., Rosner M.R., Becker L. Metabolically activated adipose tissue macrophages link obesity to triplenegative breast cancer. J Exp Med. 2019; 216(6): 1345-58. https://doi.org/10.1084/jem.20181616.
  • Boibessot C., Molina O., Lachance G., Tav C., Champagne A., Neveu B., Pelletier J.F., Pouliot F., Fradet V., Bilodeau S., Fradet Y., Bergeron A., Toren P. Subversion of infltrating prostate macrophages to a mixed immunosuppressive tumor-associated macrophage phenotype. Clin Transl Med. 2022; 12(1). https://doi.org/10.1002/ctm2.581.
  • Siefert J.C., Cioni B., Muraro M.J., Alshalalfa M., Vivié J., van der Poel H.G., Schoots I.G., Bekers E., Feng F.Y., Wessels L.F.A., Zwart W., Bergman A.M. The Prognostic Potential of Human Prostate Cancer-Associated Macrophage Subtypes as Revealed by Single-Cell Transcriptomics. Mol Cancer Res. 2021; 19(10): 1778-91. https://doi.org/10.1158/1541-7786.MCR-20-0740.
  • Su P., Wang Q., Bi E., Ma X., Liu L., Yang M., Qian J., Yi Q. Enhanced Lipid Accumulation and Metabolism Are Required for the Diferentiation and Activation of Tumor-Associated Macrophages. Cancer Res. 2020; 80(7): 1438-50. https://doi.org/10.1158/0008-5472.CAN-19-2994. Erratum in: Cancer Res. 2022; 82(5): 945.
  • Lissbrant I.F., Stattin P., Wikstrom P., Damber J.E., Egevad L., Bergh A. Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol. 2000; 17(3): 445-51. https://doi.org/10.3892/ijo.17.3.445.
  • Erlandsson A., Carlsson J., Lundholm M., Fält A., Andersson S.O., Andrén O., Davidsson S. M2 macrophages and regulatory T cells in lethal prostate cancer. Prostate. 2019; 79(4): 363-9. https://doi.org/10.1002/pros.23742.
  • Yuri P., Shigemura K., Kitagawa K., Hadibrata E., Risan M., Zulfqqar A., Soeroharjo I., Hendri A.Z., Danarto R., Ishii A., Yamasaki S., Yan Y., Heriyanto D.S., Fujisawa M. Increased tumor-associated macrophages in the prostate cancer microenvironment predicted patients’ survival and responses to androgen deprivation therapies in Indonesian patients cohort. Prostate Int. 2020; 8(2): 62-9. https://doi.org/10.1016/j.prnil.2019.12.001.
  • Shimura S., Yang G., Ebara S., Wheeler T.M., Frolov A., Thompson T.C. Reduced infltration of tumor-associated macrophages in human prostate cancer: association with cancer progression. Cancer Res. 2000; 60(20): 5857-61.
Еще
Статья научная