Multigrid finite elements in the calculations of multilayer cylindrical shells

Бесплатный доступ

An effective numerical method for calculating linearly elastic multilayer cylindrical shells under static loading implemented on the basis of Finite Element Method (FEM) procedures using the multilayer curved Lagrangian multi- grid finite elements (MFE) of the shell type was proposed. Such shells are widely used in rocket-space and aircraft engineering. MFE are developed in local Cartesian coordinate systems based on small (basic) shell partitions that take into account their heterogeneous structure, irregular shape, combined loading and fixing. The stress strained state (SSS) in the MFE was described by the equations of the three-dimensional elasticity problem without using the addi- tional kinematical and static hypotheses, which allow one to use MFE for the shells of various thicknesses to be calcu- lated. The procedure of constructing the Langrage polynomials in local curvilinear coordinate systems used to develop the shell MFE is presented. The displacements in the MFE were approximated by the power and Lagrange polynomials of different orders. When constructing a n -grid finite element (FE), n ≥ 2, n-nested grids were used. The fine grid was generated by the basic partition of the MFE; the other (coarse) grids were used to reduce its dimension. According to the method, the nodes of the coarse MFE grids are located on the common boundaries of the different modular layers of the shell. The proposed law of the expansion in the number of discrete models using MFE with a constant thickness, multiple of the shell thickness, provides a uniform and rapid convergence of approximate solutions, allowing one to frame solutions with a small error. Multigrid discrete models have 103…106 times less unknown MFE than the basic ones. The implementation of the MFE for multigrid models requires 104…107 times less computer storage space than for the reference models, which allows one using the proposed method to calculate some large shells. An example of calculating a multilayer cylindrical local loading shell of irregular shape was given. In the calculation, three-grid shell - type FE, developed on the basis of the reference models having from 2 million to 3.7 billion of the nodal MFE unknowns were used. To study the approximate solution convergence and error, a well-known numerical method was used.

Еще

Elasticity, cylindrical shells, composites, multigrid finite elements of shell type, lagrange polynomials, small error

Короткий адрес: https://sciup.org/148177798

IDR: 148177798

Список литературы Multigrid finite elements in the calculations of multilayer cylindrical shells

  • Зенкевич О. Метод конечных элементов в технике. М.: Мир, 1975. 544 с.
  • Норри Д., Де Фриз Ж. Введение в метод конечных элементов. М.: Мир, 1981. 304 с.
  • Голованов А. И., Тюленева О. И., Шигабутди-нов А. Ф. Метод конечных элементов в статике и динамике тонкостенных конструкций. М.: Физматлит, 2006. 392 с.
  • Клочков Ю. В., Николаев А. П., Шубович А. А. Анализ напряженно-деформированного состояния оболочек вращения в геометрически нелинейной постановке при различных вариантах интерполяции перемещений. Волгоград: Волгоградский ГАУ, 2013. 152 с.
  • Киселев А. П. Расчет тонких оболочек на прочность в трехмерной постановке без упрощающих гипотез//Изв. вузов. Строительство. 2008. № 1. C. 18-23.
  • Киселев А. П., Гуреева Н. А., Киселева Р. З. Расчет многослойных оболочек вращения и пластин с использованием объемных конечных элементов//Изв. вузов. Строительство. 2010. № 1. С. 106-112.
  • Бате К., Вилсон Е. Численные методы анализа и метод конечных элементов. М.: Стройиздат, 1982. 448 с.
  • Болотин В. В., Новичков Ю. Н. Механика многослойных конструкций. М.: Машиностроение, 1980. 375 с.
  • Голушко С. К., Немировский Ю. В. Прямые и обратные задачи механики упругих композитных пластин и оболочек вращения. М.: Физматлит, 2008. 432 с.
  • Ahmed A., Kapuria S. A four-node facet shell element for laminated shells based on the third order zigzag theory//Composite Structures. 2016. Vol. 158. P. 112-127.
  • Carrera E., Pagani A. Valvano S. Shell elements with through-the-thickness variable kinematics for the analysis of laminated composite and sandwich structure//Composites. Part B: Engineering. 2017. Vol. 111. P. 294-314.
  • Yasin M. Y., Kapuria S. An efficient layerwise finite element for shallow composite and sandwich shells//Composite Structures. 2013. Vol. 98. P. 202-214.
  • Cinefra M., Carrera E. Shell finite elements with different through-the-thickness kinematics for the linear analysis of cylindrical multilayered structures//Int. J. Num. Meth. Eng. 2013. Vol. 93, No. 2. P. 160-182.
  • A partial hybrid stress solid-shell element for the analysis of laminated composites/K. Rah //Comp. Meth. Appl. Mech. Eng. 2011. Vol. 200, No. 49-52. Р. 3526-3539.
  • Kara N., Kumbasar N. Three-dimensional finite element for thick shells of general shape//Int. J. for Physical and Engineering Sciences. 2001. Vol. 52. P. 1-7.
  • Sze K. Y. Three-dimensional continuum finite element models for plate/shell analysis//Prog. Struct. Eng. Mater. 2002. Vol. 4. P. 400-407.
  • Сaliri M. F., Ferreira A. J. M., Tita V. A review on plate and shell theories for laminated and sandwich structures highlighting the Finite Element Method//Composite Structures. 2016. Vol. 156. P. 63-77.
  • Матвеев А. Д., Гришанов А. Н. Многосеточное моделирование трехмерных композитных цилиндрических панелей и оболочек//Сеточные методы для краевых задач и приложения: материалы X Между-нар. конф. Казань, 2014. С. 459-467.
  • Матвеев А. Д., Гришанов А. Н. Двухсеточное моделирование цилиндрических оболочек и панелей переменной толщины//Вестник КрасГАУ. 2014. № 4. С. 90-96.
  • Матвеев А. Д., Гришанов А. Н. Многосеточные криволинейные элементы в трехмерном анализе цилиндрических композитных панелей с полостями и отверстиями//Ученые записки Казанского ун-та. Сер. «Физ.-матем. науки». 2014. Т. 156, кн. 4. С. 47-59.
  • Кабанов В. В., Железнов Л. П. К расчету цилиндрической оболочки методом конечных элементов//Прикладная механика. 1985. Т. XXI, № 9. С. 35-40.
Еще
Статья научная