Myoinositol and its metabolites in abiotic stress tolerance in plants

Автор: Mukhia Raksha, Raj Chhetri Dhani

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 4 т.18, 2022 года.

Бесплатный доступ

Myo -inositol (MI) is a sugar-alcohol produced by most plants and animals. 1L-myo-Inositol- 1-phosphate synthase (MIPS) is the rate limiting enzyme that catalyzes the conversion of D-glucose 6- phosphate to 1L-myo-inositol-1-phosphate, the first step in the production of all inositol- containing compounds. The enzyme exists in a cytoplasmic form in a wide range of plants, animals, and fungi. In plants, a chloroplastic form of the enzyme is also widely known. The significance of MI and its direct and more downstream derivatives lies in their dual functions as signalling molecules as well as key metabolites under stress. The role of MI and its derivatives in aiding the plants to cope with various abiotic stress conditions through physiological and biochemical changes have been discussed in this paper.

Еще

Abiotic stress, myo-inositol, myo-inositol-1-phosphate synthase, osmolytes, stress tolerance

Короткий адрес: https://sciup.org/143179364

IDR: 143179364

Список литературы Myoinositol and its metabolites in abiotic stress tolerance in plants

  • Abebe T., Guenzi A.C., Martin B. and Cushman J.C. (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol., 131, 1748-1755
  • Ashraf M. and Harris P.J.C. (2004) Potential Biochemical Indicators of Salinity Tolerance in Plants. Plant Sci., 166, 3-16
  • Ashraf M. Y., Awan A. R. and Mahmood K. (2012). Rehabilitation of saline ecosystems through cultivation of salt tolerant plants. Pak. J. Bot. 44, 69-75
  • Aytung Y., Sertan C. and Serpil U. (2018) Effects of exogenous myo-inositol on leaf water status and oxidative stress of Capsicum annuum under drought stress. Acta Physiol. Plant., 40, 122
  • Bartels D. and Nelson D. (1994) Approaches to improve stress tolerance using molecular genetics. Plant Cell Environ., 17, 659-667
  • Basu S., Basak A, Mahanty S, Bhattacharjee S. and Adhikari J. (2019) Biosynthesis Of Myo-Inositol In Chloroplasts Of Salinity-Stressed Marine Macro Alga Ulva Lactuca. Botanica, 25(1), 32-40
  • Bohnert H.J., Nelson D.E. and Jensen R.G. (1995) Adaptations to environmental stresses. Plant Cell., 7, 1099-1111
  • Bohnert, H.J. and Jensen, R.G. (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol., 14, 89-97
  • Cevik S. and Yildizli A. (2014) Some synthetic cyclitol derivatives alleviate the effect of water deficit in cultivated and wild-type chickpea species. J Plant Physiol, 171, 807-816
  • Chen T.H. and Murata N. (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr. Opin. Plant Biol., 5, 250-257
  • Conde A., Regalado A., Rodrigues D., Costa J.M., Blumwald E., Chaves M.M. and Geros H. (2014) Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine. J. Exp.Bot. 66, 1-18
  • Cook D., Fowler S.F.O. and Thomashow M.F. (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci., USA.101, 15243-15248
  • Crowe J.H., Crowe L.M., Carpenter J.F. and Wistrom A.C. (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J., 242, 1-10
  • Crowe J.H., Hoekstra F.A. and Crowe L.M. (1992) Anhydrobiosis. Annu. Rev. Physiol., 54, 579599. doi: 10. 1146/annurev.ph.54.030192.003051 PMID: 1562184
  • Culbertson M.R. and Henry S.A. (1975). Inositol-requiring mutants of Saccharomyces cerevisiae. Genetics., 80, 23-40.
  • Danyluk J., Houde M., Rassart E., and Sarhan F. (1994) Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant gramineae species. FEBS Lett. 344, 20-24
  • Diamantoglou S. (1974) Variation of contents of cyclitols in vegetative parts of higher plants. Biochem Physiol. Pflanz., 166: 511-523
  • Duan J., Zhang M., Zhang H., Xiong H., Liu P., Ali, J., Li J. and Li Z. (2012) OsMlOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Plant Sci., 196, 143151
  • Elsayed A.I., Rafudeen M.S. and Golldack D. (2014) Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biol. (Stuttg)., 16, 1-8
  • Ericsson A. (1979) Effects of fertilization and irrigation on the seasonal changes of carbohydrate reserves in different age-classes of needle on 20 year-old scots pine trees (Pinus silvestris). Plant Physiol., 45, 270-280
  • Espasandin F. D., Calzadilla P. I., Maiale S. J., Ruiz O.A. and Sansberro P.A. (2018) Overexpression of the arginine decarboxylase gene improves tolerance to salt stress in Lotus tenuis plants. J. Plant Growth Regul., 37, 156165.
  • Evers D.L., Lefevre I., Legay S., Lamoureux D., Hausman J.F., Rosales R.O.G., Marca L.R.T., Hoffmann L., Bonierbale M. and Schafleitner R. (2010) Identification of droughtresponsive compounds in potato through a combined transcriptomic and targeted metabolite approach. J. Exp. Bot., 61, 2327-2343
  • Fan H.F., Ding L., Xu Y.L. and Du C.X. (2017) Antioxidant system and photosynthetic characteristics responses to short-term PEG-induced drought stress. Russ. J. Plant Physiol., 64(2), 162-173
  • Farooq M., Wahid A., Kobayashi N., Fujita D. and Basra S.M.A. (2009) Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev., 29, 185-212
  • Fitter A.H. & Hay R.K.M. (1981) Environmental Physiology of Plants, Academic Press, London.
  • Gadjev I., Ston J.M. and Gechev T.S. (2008) Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. Int. Rev. Cell. Mol. Biol. 270, 87-144
  • Ganeshan S., Vitamvas P., Fowler D. B. and Chibbar R. N. (2008) Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. J. Exp. Bot., 59(9), 2393-2402
  • Ghosh D.K., Maitra S., Goswami L., Roy D., Das K.P. and Majumder A.L. (2006) An insight into the molecular basis of salt tolerance of L-myo-inositol 1-P synthase (PcINO1) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice. Plant Physiol., 140, 12791296
  • Gill S.S. and Tuteja N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48, 909-930
  • Gilmour S.J., Sebolt A.M., Salazar M.P., Everard, J.D. and Thomashow M.F. (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol., 124 18541865
  • Hannah M.A., Zuther E., Buchel K. and Heyer A.G. (2006) Transport and metabolism of raffinose family oligosaccharide in transgenic potato. J. Exp. Bot. 57, 3801-3811
  • Hasegawa P.M., Bressan R.A., Zhu J.K., and Bohnert H.J. (2000) Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Mol. Plant Physiol., 51, 463-499
  • Hayashi H., Alia, Mustardy L., Deshnium P., Ida M. and Murata N. (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: Accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J., 12, 133-142
  • He C., Yang A., Zhang, W.; Gao, Q.; Zhang, J. (2010) Improved salt tolerance of transgenic wheat by introducing betA gene for glycine betaine synthesis. Plant Cell Tiss. Org. Cult., 101, 65-78
  • Hegeman C.E., Good L.L. and Grabau E.A. (2001) Expression of D-myoinositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis. Plant Physiol., 125, 1941-1948
  • Holmstrom K.O., Mântylâ E., Welin B., Mandal A., Palva E.T., Tunnela O.E. and Londesborough J. (1996) Drought tolerance in tobacco. Nature., 379, 683-684
  • Hu Y. and Schmidhalter U. (2005) Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci., 168, 541-549
  • Ishitani M., Majumder A.L., Bornhouser A., Michalowski C.B., Jensen R.G., and Bohnert H.J. (1996) Coordinate transcription induction of myo-inositol metabolism during environmental stress. Plant J., 9, 537-548
  • Jaglo-Ottosen K.R., Gilmour S.J., Zarka D.G, Schabenberger O. and Thomashow M.F. (1998) Arabidopsis CBF1 Overexpression Induces COR Genes and Enhances Freezing Tolerance. Science, 280(5360), 104-106
  • Jang I.C., Oh S.J., Seo J.S., Choi W.B., Song S.I, Kim C.H, Kim Y.S., Seo H.S., Choi Y.D., Nahm B.H. and Kim J.J. (2003) Expression of a Bifunctional Fusion of the Escherichia coli Genes for Trehalose-6-Phosphate Synthase and Trehalose-6-Phosphate Phosphatase in Transgenic Rice Plants Increases Trehalose Accumulation and Abiotic Stress Tolerance without Stunting Growth. Plant Physiol., 131(2), 516-24
  • Johnson M.D. (1994) The Arabidopsis thaliana myo-inositol 1-phosphate synthase (EC 5.5.1.4). Plant Physiol., 105, 1023-1024
  • Joshi R., Ramanarao M.V. and Baisakh N. (2013) Arabidopsis plants constitutively overexpressing a myoinositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. Plant Physiol. Biochem., 65, 6166
  • Karthikeyan A., Pandian S.K. and Ramesh M. (2011) Transgenic indica rice cv. ADT43 expressing a 1-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance. PCTOC, 107(3): 383-395
  • Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K. and Shinozaki K. (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol., 17, 287291
  • Kaur H., Shukla R.K., Yadav G., Chattopadhya D. and Majee M. (2008) Two divergent genes encoding L-myo-inositol-1-phosphate synthase 1 (CaMIPS1) and 2 (CaMIPS2) are differentially expressed in chickpea. Plant Cell Env., 3, 1701-1716
  • Kaur H., Verma P., Petla B.P., Rao V., Saxena S.C. and Majee M. (2013) Ectopic expression of the ABA-inducible dehydration-responsive chickpea L-myo-inositol 1-phosphate synthase 2 (CaMIPS2) in Arabidopsis enhances tolerance to salinity and dehydration stress. Planta., 237, 321-335
  • Kerner U., Peterbauer T., Raboy V., Jones D.A., Hedley C.L. and Richter A. (2004) Myo-inositol and sucrose concentrations affect the accumulation of raffinose family oligosaccharides in seeds. J. Exp. Bot., 55, 1981-1987
  • Khurana N, Sharma N and Khurana P (2017) Overexpression of a heat stress inducible wheat myo-inositol-1-phosphate synthase 2 (TaMIPS2) confers tolerance to various abiotic stresses in Arabidopsis thaliana. Agri. Gene, 6, 24-30
  • Kikuchi K., Terauchi K., Wada M. and Hirano H. (2003) The plant MITE mPing is mobilized in anther culture. Nature., 421, 167-170
  • Kishor P.B.K., Hong Z.L., Miao G.H., Hu C.A.A. and Verma D.P.S. (1995) Overexpression of D-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol., 108, 13871394
  • Kotak S, Vierling E, Bäumlein H., and Koskull-Döring P. (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell, 19, 182-195
  • Kumar V., Shriram V., Kishor P.K., Jawali N. and Shitole M.G. (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol. Rep., 4, 37-48
  • Larkindale J., Hall J.D., Knight M.R. and Vierling E. (2005) Heat Stress Phenotypes of Arabidopsis Mutants Implicate Multiple Signaling Pathways in the Acquisition of Thermotolerance. Plant Physiol., 138(2):882-97
  • Larson S.R. and Raboy V. (1999) Linkage mapping of maize and barley myoinositol 1-phosphate synthase DNA sequences: correspondence with a low phytic acid mutation. Theor. Appl. Genet., 99, 27 -36
  • Li H., Chang J., Chen H., Wang Z., Gu X., Wei C., Zhang Y., Ma J., Yang J. and Zhang X. (2017) Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front. Plant Sci., 8, 295
  • Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell., 10, 1391-1406
  • Loewus F.A. (1990) Structure and occurrence of inositols in plants. In Morre D.J., Boss W.F. and Loewus F.A. (ed.), In Inositol Metabolism in Plants. Wiley-Liss, New York pp. 1-11.
  • Loewus F.A. and Loewus M.W. (1983) Myo-Inositol: Its biosynthesis and metabolism. Annu. Rev. Plant Physiol., 34, 137-161
  • Loewus F.A. and Murthy P.P.N. (2000) Myo-Inositol metabolism in plants. Plant Sci., 150, 1-19
  • Majee M., Maitra S., Dastidar K.G., Pattnaik, S., Chatterjee A., Hait N.C., Das K.P. and Majumder A.L. (2004) A novel salt-tolerant L-myo-inositol-1phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J. Biol. Chem., 279, 28539-28552.
  • Martinelli F., Remorinic D., Saiab S., Massaic R. and Tonuttiaa P. (2013) Metabolic profiling of ripe olive fruit in response to moderate water stress. Scientia. Horti., 159, 52-58.
  • Mechri B., Tekaya M., Cheheb H. and Hammami M. (2015) Determination of mannitol sorbitol and myo-inositol in olive tree roots and rhizospheric soil by gas chromatography and effect of severe drought conditions on their profiles. J. Chromatogr. Sci., 53(10), 1631-1638
  • Merchant A., Tausz M., Arndt S. and Adams M. (2006) Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant, Cell & Environ., 29, 2017- 2029
  • Mizoi, J., Kanazawa, N., Kidokoro, S., Takahashi, F., Qin, F., Morimoto, K., et al. (2018). Heat-induced inhibition of phosphorylation of the stress-protective transcription factor DREB2A promotes thermotolerance of Arabidopsis thaliana. J. Biol. Chem. 294, 902-917. doi:
  • 10.1074/jbc.RA118.002662 Mukherjee R., Mukherjee A., Bandyopadhyay S., Mukherjee S., Sengupta S., Ray S. and Majumder A.L. (2019) Selective manipulation of the inositol metabolic pathway for induction of salt-tolerance in indica rice variety. Sci. Rep., 9, 5358
  • Nelson D.E., Koukoumanos M. and Bohnert H.J. (1999) Myo-inositol-dependent sodium uptake in ice plant. Plant Physiol., 119,165-172
  • Nelson D.E., Rammesmayer G. and Bohnert H.J. (1998) Regulation of cell specific inositol metabolism and transport in plant salinity tolerance. Plant Cell, 10, 753-764
  • Nomura M., Ishitani M., Takabe T., Rai A.K. and Takabe T. (1995) Synechococcus sp. PCC7942 transformed with Escherichia coli bet genes produces glycine betaine from choline and acquires resistance to salt stress. Plant Physiol,. 107, 703-708
  • Orthen B. and Popp M. (2000) Cyclitols as cryoprotectants for spinach and chickpea thylakoids. Environ. Exp. Bot., 44, 125-132
  • Panikulangara T.J., Eggers-Schumacher G., Wunderlich M., Stransky H. and Schoffl F. (2004) Galactinol synthase1: a novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physio.,l 136, 3148-3158
  • Patra B., Ray S., Richter A. and Majumder A. L. (2010) Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methylated inositol. Protoplasma., 245, 143-52
  • Paul M.J. and Cockburn W. (1989) Pinitol, a Compatible Solute in Mesembryanthemum crystallinum. J. Exp. Bot., 219, 1093-1098
  • Per T.S., Khan N.A., Reddy P.S., Masood A., Hasanuzzaman M., Khan M.I.R. and Anjum N.A. (2017) Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiol Biochem., 115, 126-140
  • Peter S., Mundree S.G., Thomson J.A., Farrant J.M. and Keller F. (2007) Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J. Exp. Bot., 58, 1947-1956
  • Pical C., Westergren T., Dove S.K., Larsson C. and Sommarin M. (1999) Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J. Biol. Chem. 274, 38232-38240
  • Popp M. and Smirnoff N. (1995) Polyol accumulation and metabolism during water deficit. In Smirnoff, N. (ed.), Environment and plant metabolism: Flexibility and acclimation environment plant biology series, BIOS, Oxford, pp. 199-215
  • Popp M., Lied W., Bierbaum U., Gross M., Grobe-schulte T., Hams S., Oldenettel J., Schuler S. and Wiese J. (1997) Cyclitol-stable osmotic in trees. In Rennenberg, H., Escherich, W. and Ziegler H. (ed.), Trees-Contribution to modern tree physiology, Backhuys, Leiden, pp. 257270.
  • Posternak T. (1965) The cyclitols. Holden Day, San Francisco, Hermann, Paris Rai A. C., Singh M. and Shah K. (2013) Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C2H2 zinc finger transcription factor. Phytochem., 85, 44-50
  • Rammesmayer G., Pichorner H., Adams P., Jensen R.G., and Bohnert H.J. (1995) Characterization of IMT1, myoinositol O-methyltransferase, from Mesembryanthemum crystallinum. Arch. Biochem. Biophys., 322, 183-188
  • RayChaudhuri A. and Majumder A.L. (1996) Salinity induced enhancement of L-myo-inositol-1-phosphate synthase in rice (Oryza sativa L.). Plant Cell Environ., 19, 1437-1442
  • Rezaei QBF., Solouki A., Tohidfar M., Mehrjerdi M.Z., Izadi-Darbandi A. and Vahdati K. (2020) Agrobacterium-mediated transformation of Persian walnut using BADH gene for salt and drought tolerance. J. Hortic. Sci. Biotechnol., 96, 162-171
  • Richter A. (1989) Osmotisch wirksame Inhaltsstoffe in einheimischen Mistelarten and ihren Wirten. University of Vienna Ph.D. Thesis
  • Roy M. and Wu R. (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci., 163, 987992
  • Roy M. and Wu R. (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci. J., 163(5), 987-992
  • Sacher R.F. and Staples R.C. (1985) Inositol and sugars in adaptation of tomato to salt. Plant Physiol., 77(1) 206-210
  • Saibi W., Feki K., Mahmoud R.B. and Brini F. (2015) Durum wheat dehydrin (DHN-5) confers salinity tolerance to transgenic Arabidopsis plants through the regulation of proline metabolism and ROS scavenging system. Planta., 242(5), 118794
  • Sambe M.A.H., He X., Tu Q. and Guo Z. (2015) A cold-induced myo-inositol transporter-like gene confers tolerance to multiple abiotic stresses in transgenic tobacco plants. Physiol Plant., 153, 355-364
  • Sarkar T., Tankappan R., Kumar A., Mishra G. P. and Dobaria J.R. (2014) Heterologous Expression of the AtDREB1A Gene in Transgenic Peanut-Conferred Tolerance to Drought and Salinity Stresses. PLoS One., 9, 110-507
  • Sengupta S., Mukherjee S., Basak P. and Majumder A.L. (2015) Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front Plant Sci., 6, 1-11
  • Serraj R. and Sinclair T.R. (2002) Osmolyte accumulation: Can it really help increase crop yield under drought conditions?. Plant Cell Environ., 25(2), 333-341
  • Shen B., Jensen R.G. and Bohnert H.J. (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol., 113, 1177-1183.
  • Sheveleva E., Chmara W., Bohnert H.J. and Jensen R.G. (1997) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol., 115, 1211-1219.
  • Somerville C. (1995) Direct tests of the role of membrane lipid composition in low-temperature-induced photoinhibition and chilling sensitivity in plants and cyanobacteria. Proc. Natl. Acad. Sci. 92, 6215-6218
  • Sprenger N. and Keller F. (2000) Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: the roles of two distinct galactinol synthase. Plant J., 21, 249-258
  • Stevenson-Paulik J., Bastidas R.J., Chiou S.T., Frye R.A. and York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. PNAS102: 12612-12617
  • Strauss B.S. (1958) Cell death and unbalanced growth in Neurospora. J. Gen. Microbiol., 18, 658-669
  • Szabados L., Kovacs H., Zilberstein A. and Bouchereau A. (2011) Plants in extreme environments. Adv Bot Res. 57, 105-150 https://doi.org/10.1016/ B978-0-12-387692-8.00004-7
  • Taji T., Ohsumi C., luchi S., Seki M., Kasuga M., Kobayashi M., Yamaguchi-Shinozaki K. and Shinozaki K. (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J., 29, 417-426
  • Taji T., Ohsumi C., luchi S., Seki M., Kasuga M., Kobayashi M., Yamaguchi-Shinozaki K. and Shinozaki K. (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J., 29, 417-426
  • Taji T., Ohsumi C., Luchi C. and Seki M. (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J., 29(4), 417-26
  • Taji T., Takahashi S. and Shinozaki K. (2006) Inositol ad their metabolism in abiotic and biotic stress responses. Subcell. Biochem., 39, 239-264
  • Talwar H.S., Takeda H., Yashima S. and Senboku T. (1999) Growth and photosynthetic responses of groundnut genotypes to high temperature. Crop Sci., 39, 460-466
  • Tan J.L., Wang C.Y., Xiang B., Han R.H. and Guo Z.F. (2013) Hydrogen peroxide and nitric oxide mediated cold- and dehydration-induced myo-inositol phosphate synthase that confers multiple resistances to abiotic stresses. Plant, Cell Environ. 36, 288-299
  • Tarczynski M., Jensen R. and Bohnert H. (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science, 259, 508-510
  • Thomashow M.F. (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol., 50, 571599
  • Umezawa T., Yoshida R., Maruyama K., Yamaguchi-Shinozaki K. and Shinozaki K. (2004) SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America. 101, 17306- 17311
  • Vernon D., and Bohnert H.J. (1992) A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J., 11, 2077-2085
  • Wahid A., Gelani S, Ashraf M. and Foolad M.R., (2007) Heat tolerance in plants: An overview. Environ. Exp. Bot., 61, 199-223
  • Wang F.B., Zhai H., An Y.Y., Si Z.Z., He S.Z. and Liu Q.C. (2016) Overexpression of IbMIPS1 gene enhances salt tolerance in transgenic sweetpotato. J Integr Agric., 15, 271-281
  • Wei W., Dai X., Wang Y., Chuan Y., Gou C.B. and Chen F. (2010) Cloning and expression analysis of 1 L-myo-Inositol-1-phosphate synthase gene from Ricinus communis L. Z. Naturforsch. C., 65, 501-507
  • Wu Y., Kuzma J., Marechal E., Graeff R., Lee H.C., Foster R. and Chua N.H. (1997) Abscisic acid signaling through cyclic ADP-ribose in plants. Science., 278, 2126-2130
  • Yang Y., Xu S., An L. and Chen N. (2007) NADPH oxidase-dependent hydrogen peroxide production, induced by salinity stress, may be involved in the regulation of total calcium in roots of wheat. J. Plant Physiol., 164(11), 1429-1435
  • Yoshida K.T., Wada T., Koyama H., Mizobuchi-Fukuoka R. and Naito S. (1999) Temporal and spatial patterns of accumulation of the transcript of myo-inositol-1-phosphate synthase and phytin-containing particles during seed development in rice. Plant Physiol., 119, 65 -72.
  • Zhai S, Jinxi H, Lei X, Yanyan A, Shaozhen H, Quingchang L (2016) A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought toleranceand stem nematode resistance in transgenic sweet potato. Plant Biotechnol. J. 14, 592-602
  • Zhai S, Jinxi H, Lei X, Yanyan A, Shaozhen H, Quingchang L (2016) A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought toleranceand stem nematode resistance in transgenic sweet potato. Plant Biotechnol. J. 14, 592-602
  • Zhang H., Dong H., Li W., Sun Y., Chen S. and Kong X. (2009) Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Mol. Breed., 23, 289-298
  • Zheng L., Chen S., Xie L., Lu Z., Liu M. and Han X., Qiao G., Jiang J., Zhuo R., Qiu W. and He, Z. (2018) Overexpression of cysteine protease gene from Salix matsudana enhances salt tolerance in transgenic Arabidopsis. Environ. Exp. Bot., 147, 53-62.
  • Zhu Y., Zhang L., Fan J. and Han S. (2007) Neural basis of cultural influence on self-representation. NeuroImage, 34, 1310-16
  • Zhuo C., Wang T., Lu S., Zhao Y, Li X. and Guo Z. (2013) A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by myo-inositol and confers multiple tolerances to abiotic stresses. Physiol. Plant., 149, 67-78
Еще
Статья обзорная