Напряженное состояние и условия инициирования трещины в адгезионном слое композита
Автор: Богачева В.Э., Глаголев В.В., Глаголев Л.В., Маркин А.А.
Статья в выпуске: 3, 2021 года.
Бесплатный доступ
На основе концепции слоя взаимодействия рассмотрено упругое деформирование композита, состоящего из пластин, связанных адгезионным слоем. Толщина слоя принимается в качестве линейного параметра. При нагружении нормальным отрывом в случае плоской деформации учитывается трехосное напряженное состояние адгезионного слоя. Из общей вариационной постановки посредством гипотезы плоских сечений получена постановка задачи в дифференциальном виде. В рамках упрощенной постановки найдено аналитическое решение, которое согласуется с численным решением, полученным методом конечных элементов. Показано, что коэффициент Пуассона адгезионного слоя существенно влияет на его напряженное состояние, в котором имеет место практическое совпадение двух главных напряжений. Для слабосжимаемых адгезионных слоев реализуется напряженное состояние, близкое к гидростатическому растяжению. С целью анализа напряженного состояния адгезионного слоя, сингулярного при предельно малых значениях линейного параметра, предлагается использовать энергетическое произведение (ЭП), локальные напряжения (ЛН) и локальные деформации (ЛД). ЭП определяется в виде произведения удельной свободной энергии слоя и линейного параметра, а ЛН (ЛД) - в виде произведения напряжений (деформаций) и квадратного корня из линейного параметра. Показано, что данные характеристики не являются сингулярными относительно малых толщин слоя и не зависят от линейного параметра. Установлено, что величина, к которой сходится ЭП при фиксированной внешней нагрузке и стремлении линейного параметра к нулю не зависит от механических свойств адгезива, а величины ЛН (ЛД) зависят от свойств адгезива. При критической нагрузке инициирования трещины в адгезиве ЛД в направлении отрыва существенно (на несколько порядков) превышает ЛД в ортогональном направлении. При этом ЛН и ЛД отрыва вносят основной вклад в формирование ЭП. Предложена методика определения критического значения ЭП, соответствующего инициированию трещины в адгезиве, на основе использования максимальной внешней нагрузки из экспериментальных R-кривых.
Энергетическое произведение, локальное напряжение, локальная деформация, слой взаимодействия, линейный параметр
Короткий адрес: https://sciup.org/146282388
IDR: 146282388 | DOI: 10.15593/perm.mech/2021.3.03
Список литературы Напряженное состояние и условия инициирования трещины в адгезионном слое композита
- Kanninen M.F., Popelar C.H. Advanced Fracture Mechanics. - United Kingdom: Oxford University Press, 1985. - 563 р.
- Barker D.B., Sanford R.J., Chona R. Determining K and related stress-field parameters from displacement fields // Experimental Mechanics. - 1985. - Vol. 25, no. 4. - P. 399-407. doi: 10.1007/BF02321339
- Locating the crack tip using displacement field data: a comparative study / М. Zanganeh, P. Lopez-Crespo, Y.H. Tai, J.R. Yates // Strain. - 2013. - Vol. 49, no. 2. - P. 102-115. doi: 10.1111/str.12017
- Hutchinson J.W. Plastic stress and strain fields at a crack tip // Journ. Mech. Phys. Solids. - 1968. - Vol. 16. - P. 337-347. doi: 10.1016/0022-5096(68)90021-5
- Hutchinson J.W. Singular behaviour at the end of a tensile crack in a hardening material // Journ. Mech. Phys. Solids. - 1968. - Vol. 16. - P. 13-31. doi: 10.1016/0022-5096(68)90014-8
- Rice J.R., Rosengren G.F. Plane strain deformation near a crack tip in a power-law hardening material // Journ. Mech. Phys. Solids. - 1968. - Vol. 16. - P. 1-12. doi: 10.1016/0022-5096(68)90013-6
- Shlyannikov V.N., Tumanov A.V. Characterization of crack tip stress fields in test specimens using mode mixity parameters // International Journal of Fracture. - 2014. - Vol. 185. - P. 49-76. doi: 10.1007/s10704-013-9898-0
- Barenblatt G.I. The formation of equilibrium cracks during brittle fracture General ideas and hypotheses. Axially-symmetric cracks // Journal of Applied Mathematics and Mechanics. - 1959. - Vol. 23, no. 3. - P. 622-636. doi: 10.1016/0021-8928(59)90157-1
- Kumar N., Rajagopal A., Pandey M. A rate independent cohesive zone model for modeling failure in quasi-brittle materials // Mechanics of Advanced Materials and Structures. - 2015. - Vol. 22, no. 8. - P. 681-696. doi: 10.1080/15376494.2013.855852
- Experimental characterization of cohesive zone models for thin adhesive layers loaded in mode I mode II, and mixed-mode I/II by the use of a direct method / G. Lélias, E. Paroissien, F. Lachaud, J. Morlier // International Journal of Solids and Structures. - 2019. Vol. 158. - P. 90-115. doi: 10.1016/j.ijsolstr.2018.09.005
- Thanh L.T., Belaya L.A., Lavit I.M. A solution to the problem of elastic half-plane with a cohesive edge crack // IOP Conf. Series: Journal of Physics: Conference Series. - 2018. - Vol. 973, no. 1. - id. 12020. doi: 10.1088/1742-6596/973/1/012020.
- Lavit I.M. Stable crack growth in an elastoplastic material // Strength of Materials. - 1988. - Vol. 20, no. 7. - P. 854-860. doi: 10.1007/BF01528695
- The cohesive zone model: advantages, limitations and challenges / M. Elices, G.V. Guinea, J. Gómez, J. Planas // Engineering Fracture Mechanics. - 2002. - Vol. 69, no. 2. - P. 137-163. doi: 10.1016/S0013-7944(01)00083-2
- Cui W., Wisnom M.R. A combined stress-based and fracture-mechanics-based model for predicting delamination in composites // Composites. - 1993. - Vol. 24, no. 6. - P. 467-474. doi: 10.1016/0010-4361(93)90016-2
- Petrossian Z., Wisnom M.R. Prediction of delamination initiation and growth from discontinuous plies using interface elements // Composites: Part A: Applied Science and Manufacturing. - 1998. - Vol. 29, no. 5-6. - P. 503-515. doi: 10.1016/S1359-835X(97)00134-6
- Feraren P., Jensen H.M. Cohesive zone modelling of interface fracture near flaws in adhesive joints // Engineering Fracture Mechanics. - 2004. - Vol. 71, no. 15. - P. 2125-2142. doi: 10.1016/j.engfracmech.2003.12.003
- Prandtl L., Knauss W.G. A thought model for the fracture of brittle solids // International Journal of Fracture. - 2011. - Vol. 171, no. 2. - P. 105-109. doi: 10.1007/s10704-011-9637-3
- Ентов В.М., Салганик Р.Л. К модели хрупкого разрушения Прандтля // Изв. АН СССР. МТТ. - 1968. - № 6. - С. 87-99.
- Салганик Р.Л., Мищенко А.А., Федотов А.А. Модель трещины Прандтля и ее применение для решения задачи механики контактного взаимодействия // К 75-летию со дня рождения профессора Владимира Марковича Ентова. - Ижевск: Институт компьютерных исследований, 2012. - 180 с.
- Салганик Р.Л., Мищенко А.А., Федотов А.А. Напряженное состояние в окрестности выработки, пройденной в глубокозалегающем горизонтальном пласте // Физико-технические проблемы разработки полезных ископаемых. - 2015. - № 2. - С. 24-33.
- Макклинток Ф. Пластические аспекты разрушения // Разрушение. - М.: Мир, 1975. - Т. 3. - С. 67-262.
- Modelling shear loading of a cantilever with a crack-like defect explicitly including linear parameters / F. Berto, V.V. Glagolev, L.V. Glagolev, A.A. Markin // International Journal of Solids and Structures // 2020. - Vol. 193-194. - P. 447-454. doi: 10.1016/j.ijsolstr.2020.02.039
- Glagolev V.V., Markin A.A. Fracture models for solid bodies, based on a linear scale parameter // International Journal of Solids and Structures. - 2019. - Vol. 158. - P. 141-149. doi: 10.1016/j.ijsolstr.2018.09.002
- Berto F., Glagolev V.V., Markin A.A. Relationship between Jc and the dissipation energy in the adhesive layer of a layered composite // International Journal of Fracture. - 2020. - Vol. 224, no. 2. - P. 277-284. doi: 10.1007/s10704-020-00464-0
- Comparative evaluation of the Double-Cantilever Beam and Tapered Double-Cantilever Beam tests for estimation of the tensile fracture toughness of adhesive joints / R.M. Lopes, R.D.S.G. Campilho, F.J.G.da Silva, T.M.S. Faneco // Journal of Adhesion and Adhesives. - 2016. - Vol. 67. - P. 103-111. doi: 10.1016/j.ijadhadh.2015.12.032
- Fracture toughness determination of adhesive and co-cured joints in natural fibre composites / R.D.S.G. Campilho, D.C.Moura, G D.J.S.onçalves, J.F.M.G. da Silva, M.D. Banea, L.F.M. da Silva // Composites Part B: Engineering. - 2013. - Vol. 50. - P. 120-126. doi: 10.1016/j.compositesb.2013.01.025
- Тимошенко С.П., Войновский-Кригер С. Пластины и оболочки. - М.: Физматгиз, 1963. - 636 с.
- Panteghini A., Bardella L. Structural theory and finite element modelling of linear elastic sandwich beams subject to severe boundary conditions // Eur. J. Mech. A-Solid. - 2017. - Vol. 61. - P. 393-407. doi: 10.1016/j.euromechsol.2016.10.012
- Mattei O., Bardella L. A structural model for plane sandwich beams including transverse core deformability and arbitrary boundary conditions // Eur. J. Mech. A-Solid. - 2016. - Vol. 58. - P. 172-186. doi: 10.1016/j.euromechsol.2016.01.015
- Panettieri E., Fanteria D., Danzi F. Delaminations growth in compression after impact test simulations: Influence of cohesive elements parameters on numerical results // Composite Structures. - 2016. - Vol. 137. - P. 140-147. doi: 10.1016/J.COMPSTRUCT.2015.11.018
- Model crack with a scalable linear parameter / V.V. Glagolev, L.V. Glagolev, A.A. Fursaev, A.A. Markin // IOP Conf. Series: Journal of Physics: Conf. Series 1203. - 2019. - id. 012017. doi: 10.1088/1742-6596/1203/1/012017
- Zenkevich O.C., Morgan K.J. Finite Elements and Approximation. - New York: John Wiley & Sons, 1983. - 328 p.
- Капустин С.А., Лихачева С.Ю. Моделирование процессов деформирования и разрушения материалов с периодически повторяющейся структурой. - Н. Новгород: Изд-во ННГАСУ, 2012. - 96 с.
- Belytschko T., Black T. Elastic crack growth in finite elements with minimal remeshing // International Journal for Numerical Methods in Engineering. - 1999. - Vol. 45, no. 5. - P. 601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5-601 ::AID-NME598-3.0.CO;2-S