Напряжённо-деформированное состояние тонкостенных трубных заготовок при обжиме в криволинейной осесимметричной матрице

Бесплатный доступ

Предложена расчётно-аналитическая модель определения напряжённо-деформированного состояния и силовых характеристик при обжиме тонкостенных трубных заготовок в криволинейной осесимметричной матрице. Математическая модель построена на основании уравнения равновесия безмоментной теории тонких осесимметричных оболочек с учетом нелинейного закона пластичности, изменения толщины стенки заготовки и контактного трения. В качестве математической модели материала рассмотрена линейно-степенная аппроксимация диаграммы деформирования упругопластического тела с учетом сжимаемости материала. Методика оценки напряженно-деформированного состояния заготовки при обжиме построена с применением обобщенной формулировки для произвольной кривой, образующей рабочий контур матрицы. Основой численной методики расчета являлся метод переменных параметров упругости, что позволяет определить напряжения и деформации, распределение толщины в меридиональном сечении, величину контактного давления, а также построить график изменения усилия обжима в зависимости от перемещения точки приложения усилия относительно матрицы. На примере матрицы, рабочий контур которой описывается синусоидальной тригонометрической функцией, проведен расчет распределения напряжений, деформаций тонкостенной заготовки из авиационного алюминиевого сплава при обжиме. В процессе обжима по результатам предложенной численной методики отмечается утолщение стенки заготовки, а также увеличение деформирующего усилия при перемещении точки приложения усилия. Предложенная математическая модель может найти применение для расчетов процесса обжима заготовок в осесимметричных матрицах сложной формы, с переменной кривизной, что особенно важно в области авиастроения. Актуальность результатов исследования обусловлена возможностью учета при оценке картины напряженно-деформированного состояния изменения толщины заготовки, а также физической нелинейности в области пластического деформирования.

Еще

Обжим, тонкостенная оболочка, метод переменных параметров упругости, криволинейная матрица, нелинейная пластичность, напряжения, деформации

Короткий адрес: https://sciup.org/146282821

IDR: 146282821   |   DOI: 10.15593/perm.mech/2024.1.03

Список литературы Напряжённо-деформированное состояние тонкостенных трубных заготовок при обжиме в криволинейной осесимметричной матрице

  • Горбунов, М.Н. Технология заготовительно-штамповочных работ в производстве самолетов / М.Н. Горбунов. – М.: Машиностроение, 1981. – 224 с.
  • Сторожев, М.В. Теория обработки металлов давлением / М.В. Сторожев, М.В. Попов. – 4-е изд., перераб. и доп. – М.: Машиностроение, 1977. – 423 с.
  • Малинин, Н.Н. Прикладная теория пластичности и ползучести / Н.Н. Малинин. – М.: Машиностроение, 1975. – 399 с.
  • Листовая штамповка: Расчёт технологических параметров: Справочник / В.И. Ершов [и др.]. – М.: Изд-во МАИ, 1999. – 516 с.
  • Яковлев, С.С. Анализ влияния технологических параметров операций обжима и раздачи в изотермических условиях на силовые режимы / С.С. Яковлев, Ю.В. Бессмертная, В.И. Платонов // Тула: Известия ТулГУ. Технические науки. – 2015. – Вып. 11. Ч. 1. – С. 10–19.
  • Konovalov, V. Assessment of factors limiting technological capabilities crimping conical die blanks from thick-walled pipes / V. Konovalov, Yu. Chugunova // Omsk Scientific Bulletin. – 2019. – No. 165. – Р. 11–15. doi: 10.25206/1813-8225-2019-165-11-15
  • Непершин, Р.И. Обжим тонкостенной трубы криволинейной матрицей / Р.И. Непершин // Проблемы машиностроения и надежности машин. – 2009. – № 3. – С. 54–62.
  • Проскурин, А.М. Исследование технологических параметров обжима толстостенных трубных заготовок / А.М. Проскурин // Россия молодая: передовые технологии – в промышленность. – 2013. – № 1. – С. 126–129.
  • Пономарев, А.С. Технология обжима трубных заготовок из чугуна ВЧ-40 / А.С. Пономарев, А.Э. Артес, Е.Н. Сосенушкин // Вестник МГТУ «Станкин». – 2011. – № 4(16). – С. 43–45.
  • Коновалов, В.А. Оценка факторов ограничения технологических возможностей обжима коническими матрицами заготовок из толстостенных труб / В.А. Коновалов, Ю.А. Чугунова // Омский научный вестник. – 2019. – № 3(165). – С. 11– 15. doi: 10.25206/1813-8225-2019-165-11-15
  • Сулейман, А.А. Влияние коэффициента трения на формоизменение трубной заготовки при совмещенной операции обжима и раздачи / А.А. Сулейман, И.Н. Шубин // Известия высших учебных заведений. Машиностроение. – 2013. – № 6. – С. 53–59.
  • Sosenushkin, E.N. The enhancement of axis-symmetrical deformation mathematical model / E.N. Sosenushkin, E.A. Yanovskaya // Machines, Technologies, Materials. – 2011. – Vol. 5, no. 11. – P. 36–39.
  • К вопросу постановки эксперимента по обжиму трубной заготовки / В.А. Демин, Е.И. Семенов, А.Е. Феофанова [и др.] // Известия Тульского государственного университета. Технические науки. – 2010. – № 3. – С. 25–29.
  • Шишкин, А.А. Об обжиме особо тонкостенных трубных заготовок / А.А. Шишкин // Наука и образование: научное издание МГТУ им. Н.Э. Баумана. – 2013. – № 3. – С. 157–168.
  • Ларин, С.Н. Оценка влияния величины утонения стенки на процесс обжима трубной заготовки / С.Н. Ларин, В.И. Платонов, П.В. Романов // Известия Тульского государственного университета. Технические науки. – 2021. – № 3. – С. 3–6. doi: 10.24412/2071-6168-2021-3-3-6
  • Pipe reduction of miniature inner grooved copper tubes through rotary swaging process / L. Lu, Y. Tang, W. Fang, J. Cheng // Transactions of Nonferrous Metals Society of China. – 2013. – No. 23. – P. 377–384. doi: 10.1016/S1003-6326(13)62473-5
  • Effect of rotary swaging and subsequent annealing on microstructure and mechanical properties of W-1.5ZrO2 alloys / Z. Li, Y. Chen, S. Wei, K. Pan, H. Shen, L. Xu // Journal of Alloys and Compounds. – 2021. – No. 875. – P. 160041. doi: 10.1016/j.jallcom.2021.160041
  • Lim, S. Forming characteristics of tubular product through the rotary swaging process / S. Lim, H. Choi, C. Lee // Journal of Materials Processing Technology. – 2009. – No. 209. – P. 283–288. doi: 10.1016/j.jmatprotec.2007.08.086
  • Хейн, В.З. Математическое моделирование процесса ротационного обжима концевого участка трубы / В.З. Хейн // Интернет-журнал Науковедение. – 2013. – № 6(19). – С. 165.
  • Piela, A. Analysis of the metal flow in swaging numerical modelling and experimental verification / A. Piela // International Journal of Mechanical Sciences. – 1997. – No. 39. – P. 221–231. doi: 10.1016/0020-7403(96)00056-2
  • Kaliuzhnyi, A. The analysis of block pressing process of the cylinder necks on tubular preforms in a spherical matrix with a differentiated backpressure / A. Kaliuzhnyi // Journal of Mechanical Engineering of the National Technical University of Ukraine Kyiv Polytechnic Institute. – 2012. – No. 66. – P. 133–137.
  • Andrianov, I.K. Bearing capacity of spherical thickwalled shell taking into account compressibility and nonlinear plasticity / I.K. Andrianov, S.I. Feoktistov // Materials Physics and Mechanics. – 2022. – Vol. 50, no. 3. – P. 410–419. doi: 10.18149/MPM.5032022_5
  • Тырымов, А.А. Численная реализация метода переменных параметров при решении упругопластических задач на основе графовой модели упругого тела / А.А. Тырымов, Е.Г. Шведов // Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика. – 2023. – № 2. – С. 135–144. doi: 10.24143/2072-9502-2023-2-135-144
  • Козлов, В.В. Устойчивость и единственность процессов формоизменения деталей при обработке давлением / В.В. Козлов, А.А. Маркин // Известия Тульского государственного университета. Технические науки. – 2017. – № 3. – С. 36–48.
  • Козлов, В.В. Постановка задачи о конечных деформациях полутороидальной оболочки под действием внутреннего давления / В.В. Козлов, А.А. Маркин, В.Е. Петрова // Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния. – 2020. – № 4(46). – С. 155–163. doi: 10.37972/chgpu.2020.46.4.013
  • Кондратьев, Н.С. Моделирование неупругого деформирования поликристаллических материалов с учетом упрочнения за счет границ кристаллитов / Н.С. Кондратьев, П.В. Трусов // Вестник Пермского университета. Серия: Физика. – 2012. – № 4(22). – С. 92–100
  • Трусов, П.В. Физические теории пластичности: теория и приложения к описанию неупругого деформирования материалов. Ч. 1: Жесткопластические и упругопластические модели / П.В. Трусов, П.С. Волегов // Вестник Пермского государственного технического университета. Механика. – 2011. – № 1. – С. 5–45.
  • Маркин, А.А. Движение тонкого жёсткопластического тела по поверхности с осевой симметрией / А.А. Маркин, Т.А. Лыу // Известия Тульского государственного университета. Естественные науки. – 2012. – № 3. – С. 93–101
  • Биргер, И.А. Круглые пластинки и оболочки вращения / И.А. Биргер. – М.: Оборонгиз, 1961. – 368 с.
  • Полухин, П.И. Сопротивление пластической деформации металлов и сплавов: справочник / П.И. Полухин, Г.Я. Гун, А.М. Галкин. – 2-е изд., перераб. и доп. – М.: Металлургия, 1983. – 352 с.
  • Чумадин, А.С. Теория и расчеты процессов листовой штамповки (для инженеров) / А.С. Чумадин. – 2-е изд. – М: Экссервис «ВИП», 2014. – 216 с.
  • Феоктистов, С.И. Вывод интегральных уравнений деформирования трубных заготовок с использованием осесимметричной оснастки / С.И. Феоктистов, И.К. Андрианов // Фундаментальные и прикладные задачи механики деформируемого твердого тела и прогрессивные технологии в металлургии и машиностроении: материалы VI Дальневосточной конференции с международным участием. – Комсомольск-на-Амуре, 2022 – С. 204–210.
  • ГОСТ 18482-2018. Трубы прессованные из алюминия и алюминиевых спловав. Технические условия: межгосударственный стандарт: дата введения 2019-03-01 / Межгосударственный совет по стандартизации, метрологии и сертификации. – Изд. официальное. – М.: Стандартинформ, 2018. – 20 с.
  • Феоктистов, С.И. Аппроксимация диаграммы деформирования металла в области упругопластических деформаций с нелинейным упрочнением / С.И. Феоктистов, И.К. Андрианов, Л. Тхет // Ученые записки Комсомольского-на-Амуре государственного технического университета. – 2022. – № 7 (63). – С. 8–13.
  • Андрианов, И.К. Основы построения диаграмм деформирования с учётом сжимаемости материала и эффекта Баушингера: учебное пособие / И.К. Андрианов, С.И. Феоктистов. – Комсомольск-на-Амуре: ФГБОУ ВО «КнАГУ», 2022. – 103 с.
  • Феоктистов, С.И. Численно-аналитическая модель напряжённо-деформированного состояния при раздаче тонкостенных трубных заготовок в криволинейной осесимметричной матрице / С.И. Феоктистов, И.К. Андрианов, С.Б. Марьин // Труды МАИ. – 2023. – № 132.
Еще
Статья научная