Нейросетевая технология обнаружения ступенчатых аномалий в параметрах движения головы для функциональной МРТ с адаптацией на основе метаобучения
Автор: Давыдов Н.С., Евдокимова В.В., Серафимович П.Г., Проценко В.И., Храмов А.Г., Никоноров А.В.
Журнал: Компьютерная оптика @computer-optics
Рубрика: Обработка изображений, распознавание образов
Статья в выпуске: 6 т.47, 2023 года.
Бесплатный доступ
Контроль качества и обнаружение артефактов в данных функциональной магнитно-резонансной томографии актуален для исследований головного мозга и клинических применений. Движение головы испытуемых остается основным источником артефактов - даже микросмещение головы способно исказить структурные и функциональные МРТ-данные. В настоящей работе предложена сквозная нейросетевая технология обнаружения ступенчатых аномалий с обучением на частично синтезированных данных с адаптацией к конкретному малому набору реальных данных. Разработана процедура формирования синтетического набора данных для обучения и автоматизированной разметки реальных данных. Предложена рекуррентная нейросетевая модель обнаружения ступенчатых аномалий. Разработан метод адаптации модели по малому набору реальных данных на основе одношагового метаобучения. Экспериментальная проверка точности проведена в задаче детектирования ступенчатых аномалий скользящим окном в 10, 15 и 24 отсчёта. Эксперименты показали, что предложенная технология обеспечивает обнаружение ступенчатых аномалий с точностью до 0,9546.
Рекуррентные нейронные сети, обнаружение аномалий, анализ сигналов, функциональная магнитно-резонансная томография, метаобучение
Короткий адрес: https://sciup.org/140303288
IDR: 140303288 | DOI: 10.18287/2412-6179-CO-1337
Список литературы Нейросетевая технология обнаружения ступенчатых аномалий в параметрах движения головы для функциональной МРТ с адаптацией на основе метаобучения
- Holzinger A, Keiblinger K, Holub P, Zatloukal K, Müller H. AI for life: Trends in artificial intelligence for biotechnology. N Biotechnol 2023; 74: 16-24. DOI: 10.1016/j.nbt.2023.02.001.
- Fan H, Gao W, Han B. Are AI chatbots a cure-all? The relative effectiveness of chatbot ambidexterity in crafting he-donic and cognitive smart experiences. J Bus Res 2023; 156: 113526. DOI: 10.1016/j.jbusres.2022.113526.
- Dosenbach NUF, Koller JM, Earl EA, Miranda-Dominguez O, Klein RL, Van AN, Snyder AZ, Nagel BJ, Nigg JT, Nguyen AL, Wesevich V, Greene DJ, Fair DA. Real-time motion analytics during brain MRI improve data quality and reduce costs. NeuroImage 2017; 161: 80-93. DOI: 10.1016/j.neuroimage.2017.08.025.
- Alfaro-Almagro F, Jenkinson M, Bangerter NK, Anders-son JLR, Griffanti L, Douaud G, Sotiropoulos SN, Jbabdi S, Hernandez-Fernandez M, Vallee E, Vidaurre D, Webster M, McCarthy P, Rorden C, Daducci A, Alexander DC, Zhang H, Dragonu I, Matthews PM, Miller KL, Smith SM. Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage 2018; 166; 400-424. DOI: 10.1016/j.neuroimage.2017.10.034.
- Davydov N, Peek L, Auer T, Prilepin E, Gninenko N, Van De Ville D, Nikonorov A, Koush Y. Real-time and recursive estimators for functional MRI quality assessment. Neuroinformatics 2022; 20(4): 897-917. DOI: 10.1007/s12021-022-09582-7.
- Heunis S, Lamerichs R, Zinger S, Caballero-Gaudes C, Jansen JFA, Aldenkamp B, Breeuwer M. Quality and de-noising in real - time functional magnetic resonance imaging neurofeedback: A methods review. Hum Brain Mapp 2020; 41(12): 3439-3467. DOI: 10.1002/hbm.25010.
- Agafonova YuD, Gaidel AV, Zelter PM, Kapishnikov AV. Efficiency of machine learning algorithms and convolu-tional neural network for detection of pathological changes in MR images of the brain. Computer Optics 2020; 44(2): 266-273. DOI: 10.18287/2412-6179-CO-671.
- Kopel R, Sladky R, Laub P, Koush Y, Robineau F, Hutton C, Weiskopf N, Vuilleumier P, Van De Ville D, Schar-nowski F. No time for drifting: Comparing performance and applicability of signal detrending algorithms for realtime fMRI. NeuroImage 2019; 191: 421-429. DOI: 10.1016/j.neuroimage.2019.02.058.
- Van Dijk KRA, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 2012; 59(1): 431-438. DOI: 10.1016/j.neuroimage.2011.07.044.
- Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 2012; 59(3): 2142-2154. DOI: 10.1016/j.neuroimage.2011.10.018.
- Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 2014; 84: 320341. DOI: 10.1016/j.neuroimage.2013.08.048.
- Bolton TAW, Kebets V, Glerean E, Zöller D, Li J, Yeo BTT, Caballero-Gaudes C, Van De Ville D. Agito ergo sum: Correlates of spatio-temporal motion characteristics during fMRI. NeuroImage 2020; 209: 116433. DOI: 10.1016/j.neuroimage.2019.116433.
- Parkes L, Fulcher B, Yücel M, Fornito A. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. NeuroImage 2018; 171: 415-436. DOI: 10.1016/j.neuroimage.2017.12.073.
- Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage 2013; 64: 240-256. DOI: 10.1016/j.neuroimage.2012.08.052.
- Scheinost D, Papademetris X, Constable RT. The impact of image smoothness on intrinsic functional connectivity and head motion confounds. NeuroImage 2014; 95: 13-21. DOI: 10.1016/j.neuroimage.2014.03.035.
- Fair DA, Miranda-Dominguez O, Snyder AZ, Perrone A, Earl EA, Van AN, Koller JM, Feczko E, Tisdall MD, van der Kouwe A, Klein RL, Mirro AE, Hampton JM, Adeyemo B, Laumann TO, Gratton C, Greene DJ, Schlaggar BL, Hagler DJ, Watts R, Garavan H, Barch DM, Nigg JT, Petersen SE, Dale AM, Feldstein-Ewing SW, Nagel BJ, Dosenbach NUF. Correction of respiratory artifacts in MRI head motion estimates. NeuroImage 2020; 208: 116400. DOI: 10.1016/j.neuroimage.2019.116400.
- Koush Y, Zvyagintsev M, Dyck M, Mathiak KA, Mathiak K. Signal quality and Bayesian signal processing in neurofeedback based on real-time fMRI. NeuroImage 2012; 59(1): 478-489. DOI: 10.1016/j.neuroimage.2011.07.076.
- Glover GH, Li T-Q, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 2000; 44(1): 162167. DOI: 10.1002/1522-2594(200007)44: 1 < 162:: AID-MRM23-3.0.C0;2-E.
- Bagarinao E, Matsuo K, Nakai T, Sato S. Estimation of general linear model coefficients for real-time application. NeuroImage 2003; 19(2): 422-429. DOI: 10.1016/s1053-8119(03)00081-8.
- Nakai T, Bagarinao E, Matsuo K, Ohgami Y, Kato C. Dynamic monitoring of brain activation under visual stimulation using fMRI-The advantage of real-time fMRI with sliding window GLM analysis. J Neurosci Methods 2006; 157(1): 158-167. DOI: 10.1016/j.jneumeth.2006.04.017.
- Koush Y, Ashburner J, Prilepin E, Sladky R, Zeidman P, Bibikov S, Scharnowski F, Nikonorov A, De Ville DV. OpenNFT: An open-source Python/Matlab framework for real-time fMRI neurofeedback training based on activity, connectivity and multivariate pattern analysis. NeuroImage 2017; 156: 489-503. DOI: 10.1016/j.neuroimage.2017.06.039.
- Truong C, Oudre L, Vayatis N. Selective review of offline change point detection methods. Signal Process 2020; 167: 107299. DOI: 10.1016/j.sigpro.2019.107299.
- Smelkina NA, Kosarev RN, Nikonorov AV, Bairikov IM, Ryabov KN, Avdeev AV, Kazanskiy NL. Reconstruction of anatomical structures using statistical shape modeling. Computer Optics 2017; 41(6): 897-904. DOI: 10.18287/2412-6179-2017-41-6-897-904.
- Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks. ICML'17: Proc the 34th Int Conf on Machine Learning 2017 - Volume 70: 1126-1135. DOI: 10.48550/arXiv.1703.03400.
- Finn C, Levine S. Meta-learning and universality: Deep representations and gradient descent can approximate any learning algorithm. Sixth Int Conf on Learning Representations 2018: 1-20. DOI: 10.48550/arXiv.1710.11622.
- Chandola V, Banerjee A, Kumar V. Anomaly detection: A survey. ACM Comput Surv 2009; 41(3): 15. DOI: 10.1145/1541880.1541882.
- Chalapathy R, Chawla S. Deep learning for anomaly detection: A survey. arXiv Preprint. 2019. Source: https://arxiv.org/abs/1901.03407. DOI: 10.48550/arXiv. 1901.03407.
- Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao RX. Deep learning and its applications to machine health monitoring. Mech Syst Signal Process 2019; 115: 213-237. DOI: 10.1016/j.ymssp.2018.05.050.
- Nogales A, García-Tejedor ÁJ, Monge D, Vara JS, Antón C. A survey of deep learning models in medical therapeutic areas. Artif Intell Med 2021; 112: 102020. DOI: 10.1016/j.ymssp.2018.05.050.
- Gareev A, Protsenko V, Stadnik D, Greshniakov P, Yuzifovich Y, Minaev E, Gimadiev A, Nikonorov A. Improved fault diagnosis in hydraulic systems with gated convolutional autoencoder and partially simulated data. Sensors 2021; 21(13): 4410. DOI: 10.3390/s21134410.
- Ravi S, Larochelle H. Optimization as a model for few-shot learning. Int Conf on Learning Representations 2016: 1-11.
- Wang W, Zheng V, Yu H, Miao C. A survey of zero-shot learning: settings, methods, and applications. ACM Trans Intell Syst Technol 2019; 10(2): 13. DOI: 10.1145/3293318.
- Soh J, Cho S, Cho N. Meta-transfer learning for zero-shot super-resolution. 2020 IEEE/CVF Conf on Computer Vision and Pattern Recognition (CVPR) 2020: 3513-3522. DOI: 10.1109/CVPR42600.2020.00357.
- Davydov N, Khramov AG. Myocardial infarction detection using wavelet analysis of ECG signal. CEUR Workshop Proc 2018; 2212: 31-37.
- Neal RM. Slice sampling. Ann Stat 2003; 31(3): 705-767.
- van Ravenzwaaij D, Cassey P, Brown SD. A simple introduction to Markov Chain Monte-Carlo sampling. Psychon Bull Rev 2018; 25(1): 143-154. DOI: 10.3758/s13423-016-1015-8.
- Fursov VA, Nikonorov AV, Bibikov SA, Yakimov PYu, Minaev EYu. Correction of distortions in color images based on parametric identification. Pattern Recogn Image Anal 2011; 21(2): 125-128. DOI: 10.1134/S1054661811020349.
- Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. ICML'15: Proc of the 32nd Int Conf on International Conference on Machine Learning 2015: 448-456.
- Fortunato M, Azar M, Piot B, Menick J, Osband I, Graves A, Mnih V, Munos R, Hassabis D, Pietquin O, Blundell C, Legg S. Noisy networks for exploration. Sixth Int Conf on Learning Representations 2017: 1-21.
- Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. NIPS 2014 Workshop on Deep Learning 2014.
- Krylova M, Skouras S, Razi A, Nicholson A, Karner A, Steyrl D, Boukrina O, Rees G, Scharnowski F, Koush Y. Progressive modulation of resting-state brain activity during neurofeedback of positive-social emotion regulation networks. Sci Rep 2021; 11: 23363. DOI: 10.1038/s41598-021-02079-4.
- Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007; 38(1): 95-113. DOI: 10.1016/j.neuroimage.2007.07.007.
- Plisko A, Serafimovich P, Davydov N, Nikonorov A, Koush Y. Detection of step displacements in fMRI head motion data based on machine learning. 2020 Int Conf on Information Technology and Nanotechnology (ITNT) 2020: 1-4. 10.1109/ITNT49337.2020.9253193.
- Koush Y, Ashburner J, Prilepin E, Sladky R, Zeidman P, Bibikov S, Scharnowski F, Nikonorov A, Van De Ville D. Real-time fMRI data for testing OpenNFT functionality. Data in Brief 2017; 14: 344-347. DOI: 10.1016/j.dib.2017.07.049.