Нейровизуализации в клинике расстройств, связанных с употреблением психоактивных веществ (введение в проблему)

Автор: Асадуллин Азат Раилевич, Анцыборов Андрей Викторович, Ахметова Эльвина Аслямовна

Журнал: Сибирский вестник психиатрии и наркологии @svpin

Рубрика: Лекции. Обзоры

Статья в выпуске: 1 (98), 2018 года.

Бесплатный доступ

Проведенный анализ литературы, посвященной нейровизуальной картине головного мозга пациентов с наркотической зависимостью, позволяет сделать вывод о том, что практически у всех пациентов имеется дефицит нейрональных связей в отделах мозга, отвечающих за вознаграждение и импульсивность. В настоящем обзоре основное внимание уделено исследованиям, использующим позитронно-эмиссионную томографию (ПЭТ), функциональную магнитно-резонансную томографию (МРТ) и электроэнцефалографию (ЭЭГ) для исследования поведенческих нарушений у пациентов с наркотической зависимостью.

Дофамин, электроэнцефалография (ээг), магнитно-резонансная томография (мрт), позитронно-эмиссионная томография (пэт), префронтальная кора

Короткий адрес: https://sciup.org/142212925

IDR: 142212925   |   DOI: 10.26617/1810-3111

Список литературы Нейровизуализации в клинике расстройств, связанных с употреблением психоактивных веществ (введение в проблему)

  • Adams K.M. et al. The significance of family history status in relation to neuropsychological test performance and cerebral glucose metabolism studied with positron emission tomography in older alcoholic patients. Alcoholism: Clinical and Experimental Research. 1998; 22 (1): 105-110.
  • Anker J.J., Carroll M.E. Females are more vulnerable to drug abuse than males: evidence from preclinical studies and the role of ovarian hormones. Biological Basis of Sex Differences in Psychopharmacology. Springer Berlin Heidelberg, 2010: 73-96.
  • Bassareo V., De Luca M. A., Di Chiara G. Differential expression of motivational stimulus properties by dopamine in nucleus accumbens shell versus core and prefrontal cortex. Journal of neuroscience. 2002; 22 (11): 4709^719.
  • Bechara A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nature neuroscience. 2005; 8 (11): 1458-1463.
  • Bonson K.R. et al. Neural systems and cue-induced cocaine craving. Neuropsychopharmacology. 2002. 26: 376-386 DOI: 10.1016/S0893-133X(01)00371-3712
  • Brody A.L. et al. Attenuation of cue-induced cigarette craving and anterior cingulate cortex activation in bupropion-treated smokers: a preliminary study. Psychiatry Research: Neuroimaging. 2004; 130 (3): 269-281.
  • Brody A. L. et al. Brain metabolic changes during cigarette craving. Archives of General Psychiatry. 2002; 59 (12): 1162-1172.
  • Buckley P. Association of Low Striatal Dopamine D2 Receptor Availability with Nicotine Dependence Similar to That Seen with Other Drugs of Abuse. Year Book of Psychiatry & Applied Mental Health. 2009; 2009: 324.
  • Cassens G. et al. Amphetamine withdrawal: effects on threshold of intracranial reinforcement. Psychopharmacology. 1981; 73 (4): 318-322.
  • Catafau A.M. et al. Regional cerebral blood flow changes in chronic alcoholic patients induced by naltrexone challenge during detoxification. Journal of Nuclear Medicine. 1999; 40 (1): 19.
  • Childress A.R. et al. Limbic activation during cue-induced cocaine craving. American Journal of Psychiatry. 1999; 156 (1): 11-18.
  • Cornish J.L., Duffy P., Kalivas P.W. A role for nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience. 1999; 93 (4): 1359-1367.
  • Courtney K.E., Polich J. Binge drinking effects on EEG in young adult humans. International journal of environmental research and public health. 2010; 7 (5): 2325-2336.
  • Daglish M.R.C. et al. Functional connectivity analysis of the neural circuits of opiate craving): "more" rather than "different"? Neuroimage. 2003; 20 (4): 1964-1970.
  • Daurignac E. et al. 522 Attentional withdrawal and smoking cessation): A longitudinal ERP study. International Journal of Psychophysiology. 1998; 30 (1-2): 201-202.
  • Di Chiara G. A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use. Journal of psychopharmacology. 1998; 12 (1): 54-67.
  • Domino E.F. Effects of tobacco smoking on electroencephalographic, auditory evoked and event related potentials. Brain and cognition. 2003; 53 (1): 66-74.
  • Due D. L. et al. Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues): evidence from functional magnetic resonance imaging. American Journal of Psychiatry. 2002; 159 (6): 954-960.
  • Ehlers C.L., Schuckit M.A. EEG fast frequency activity in the sons of alcoholics. Biological psychiatry. 1990; 27 (6): 631-641.
  • Ehlers C.L., Wall T.L., Schuckit M.A. EEG spectral characteristics following ethanol administration in young men. Electroencephalography and Clinical Neurophysiology. 1989; 73 (3): 179-187.
  • Foltin R.W. et al. The effects of escalating doses of smoked cocaine in humans. Drug and AcoholDependence. 2003; 70 (2): 149-157.
  • Franken I.H.A. Drug craving and addiction): integrating psychological and neuropsychopharmacological approaches. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2003; 27 (4): 563-579.
  • Franklin T.R. et al. Limbic activation to cigarette smoking cues independent of nicotine withdrawal): a perfusion fMRI study. Neuropsychopharmacology. 2007; 32 (11): 2301-2309.
  • Gilman J.M. et al. Why we like to drink): a functional magnetic resonance imaging study of the rewarding and anxiolytic effects of alcohol. Journal of Neuroscience. 2008; 28 (18): 4583-4591.
  • Glenn S.W., Sinha R., Parsons O.A. Electrophysiological indices predict resumption of drinking in sober Alcoholics. Alcohol. 1993; 10 (2): 89-95.
  • Goldstein R.Z. et al. Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine addiction. Proceedings of the National Academy of Sciences. 2009; 106 (23): 9453-9458.
  • Goldstein R.Z. et al. Dopaminergic response to drug words in cocaine addiction. Journal of Neuroscience. 2009; 29 (18): 6001-6006.
  • Goldstein R.Z. et al. Role of the anterior cingulate and medial orbitofrontal cortex in processing drug cues in cocaine addiction. Neuroscience. 2007; 144 (4): 1153-1159.
  • Goldstein R. Z., Volkow N. D. Drug addiction and its underlying neurobiological basis): neuroimaging evidence for the involvement of the frontal cortex. American Journal of Psychiatry. 2002; 159 (10): 1642-1652.
  • Gooding D. C., Burroughs S., Boutros N. N. Attentional deficits in cocaine-dependent patients): converging behavioral and electrophysiological evidence. Psychiatry Research. 2008; 160 (2): 145-154.
  • Grant S. et al. Activation of memory circuits during cue-elicited cocaine craving. Proceedings of the National Academy of Sciences. 1996; 93 (21): 12040-12045.
  • Grüsser S. M. et al. Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology. 2004; 175 (3): 296-302.
  • Gu H. et al. Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. Neuroimage. 2010; 53 (2): 593-601.
  • Heinz A., Siessmeier T., Wrase J. Correlation Between Dopamine D Receptors in the Ventral Striatum and Central Processing of Alcohol Cues and Craving. Year Book of Psychiatry & Applied Mental Health. 2006; 2006): 81-82.
  • Herning R.I. et al. Cocaine increases EEG beta): a replication and extension of Hans Berger's historic experiments. Electroencephalography and Clinical Neurophysiology. 1985; 60 (6): 470-477.
  • Herning R.I. et al. Cocaine-induced increases in EEG alpha and beta activity): evidence for reduced cortical processing. Neuropsychopharmacology. 1994; 11 (1): 1-9.
  • Herning R.I. et al. Neurophysiological signs of cocaine dependence): increased electroencephalogram beta during with drawal. Biological Psychiatry. 1997; 41 (11): 1087-1094. Нейровизуализации в клинике расстройств, связанных..
  • Herrmann M.J. et al. Event related potentials and cue reactivity in alcoholism. Alcoholism: Clinical and Experimental Research. 2000; 24 (11): 1724-1729.
  • Ingvar M. et al. Alcohol activates the cerebral reward system in man. Journal of Studies on Alcohol. 1998; 59 (3): 258-269.
  • Kilts C.D. et al. Neural activity related to drug craving in cocaine addiction. Archives of General Psychiatry. 2001; 58 (4): 334-341.
  • Knott V. et al. EEG correlates of imagery-induced cigarette craving in male and female smokers. Addictive Behaviors. 2008; 33 (4): 616-621.
  • Koob G.F. et al. Role for the mesocortical dopamine system in the motivating effects of cocaine. NIDA research monograph. 1994; 145: 1-1.
  • Koob G.F., Volkow N.D. Neurocircuitry of addiction. Neuropsychopharmacology. 2010; 35 (1): 217-238.
  • Kufahl P.R. et al. Neural responses to acute cocaine administration in the human brain detected by fMRI. Neuroimage. 2005; 28 (4): 904-914.
  • Laruelle M. et al. SPECT imaging of striatal dopamine release after amphetamine challenge. Journal of Nuclear Medicine. 1995; 36 (7): 1182-1190.
  • Lehtinen I. et al. Individual Alcohol reaction profiles. Alcohol. 1985; 2 (3): 511-513.
  • Lehtinen I., Lang A.H., Keskinen E. Acute effect of small doses of alcohol on the NSD parameters (normalized slope descriptors) of human EEG. Psychopharmacology. 1978; 60 (1): 87-92.
  • Liu X. et al. Effect of cocaine-related environmental stimuli on the spontaneous electroencephalogram in polydrug abusers. Neuropsychopharmacology. 1998; 19 (1): 10-17.
  • London E.D. et al. Cocaine-induced redoppuction of glucose utilization in human brain): A study using positron emission tomography and -fluorodeoxyglucose. Archives of General Psychiatry. 1990; 47 (6): 567-574.
  • London E.D. et al. Morphine-induced metabolic changes in human brain): studies with positron emission tomography and fluorodeoxyglucose. Archives of General Psychiatry. 1990; 47 (1): 73-81.
  • Lukas S.E., Mendelson J.H., Benedikt R. Electroencephalographic correlates of marihuana-induced euphoria. Drug and Alcohol Dependence. 1995; 37 (2): 131-140.
  • Maas L.C. et al. Functional magnetic resonance imaging of human brain activation during cue-induced cocaine craving. American Journal of Psychiatry. 1998; 155 (1): 124-126.
  • Mansvelder H.D., McGehee D.S. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron. 2000; 27 (2): 349-357.
  • Martinez D. et al. Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum. Biological Psychiatry. 2005; 58 (10): 779-786.
  • Mathew R.J. et al. Regional cerebral blood flow after marijuana smoking. Journal of Cerebral Blood Flow & Metabolism. 1992; 12 (5): 750-758.
  • McClure S.M., York M.K., Montague P.R. The neural substrates of reward processing in humans): the modern role of FMRI. The Neuroscientist. 2004; 10 (3): 260-268.
  • Mogg K. et al. Eye movements to smoking □ related pictures in smokers): relationship between attentional biases and implicit and explicit measures of stimulus valence. Addiction. 2003; 98 (6): 825-836.
  • Myrick H. et al. Differential brain activity in alcoholics and social drinkers to alcohol cues): relationship to craving. Neuropsychopharmacology. 2004; 29 (2): 393.
  • Nader M.A. et al. PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nature Neuroscience. 2006; 9 (8).
  • Nader M.A., Czoty P.W. PET imaging of dopamine D2 receptors in monkey models of cocaine abuse): genetic predisposition versus environmental modulation. American Journal of Psychiatry. 2005; 162 (8): 1473-1482.
  • Nakamura H. et al. Activation of fronto-limbic system in the human brain by cigarette smoking): evaluated by a CBF measurement. The Keio Journal of Medicine. 2000; 49: A122-4.
  • Noldy N.E. et al. Quantitative EEG changes in cocaine withdrawal): Evidence for long-term CNS effects. Neuropsychobiology. 1994; 30 (4): 189-196.
  • Papageorgiou C.C. et al. Long-term abstinence syndrome in heroin addicts): indices of P300 alterations associated with a short memory task. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2004; 28 (7): 1109-1115.
  • Parsons O.A., Sinha R., Williams H.L. Relationships between Neuropsychological Test Performance and Event Related Potentials in Alcoholic and Nonalcoholic Samples. Alcoholism: Clinical and Experimental Research. 1990; 14 (5): 746-755.
  • Payer D.E. et al. Differences in cortical activity between methamphetamine-dependent and healthy individuals performing a facial affect matching task. Drug and Alcohol Dependence. 2008; 93 (1): 93-102.
  • Reid M.S. et al. Cocaine cue versus cocaine dosing in humans): evidence for distinct neurophysiological response profiles. Pharmacology Biochemistry and Behavior. 2008; 91 (1): 155-164.
  • Reid M.S. et al. Topographic imaging of quantitative EEG in response to smoked cocaine self-administration in humans. Neuropsychopharmacology. 2006; 31 (4): 872-884.
  • Risinger R.C. et al. Neural correlates of high and craving during cocaine self-administration using BOLD fMRI. Neuroimage. 2005; 26 (4): 1097-1108.
  • Ritz M.C. et al. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science. 1987; 237: 1219-1224.
  • Robinson T.E., Berridge K.C. Incentive sensitization and Addiction. Addiction. 2001; 96 (1): 103-114.
  • Saletu-Zyhlarz G.M. et al. Differences in brain function between relapsing and abstaining alcohol-dependent patients, evaluated by EEG mapping. Alcohol and Alcoholism. 2004; 39 (3): 233-240.
  • Shufman E. et al. Electro-encephalography spectral analysis of heroin addicts compared with abstainers and normal controls. The Israel Journal of Psychiatry and Related Sciences. 1996; 33 (3): 196-206.
  • Sinha R. et al. Imaging stress-and cue-induced drug and alcohol craving): association with relapse and clinical implications. Drug and Alcohol Review. 2007; 26 (1): 25-31.
  • Smolka M.N. et al. Severity of nicotine dependence modulates cue-induced brain activity in regions involved in motor preparation and imagery. Psychopharmacology. 2006; 184 (3-4): 577-588.
  • Stein E.A. et al. Nicotine-induced limbic cortical activation in the human brain): a functional MRI study. American Journal of Psychiatry. 1998; 155 (8): 1009-1015.
  • Tanabe J. et al. Ventral striatal blood flow is altered by acute nicotine but not withdrawal from nicotine. Neuropsychopharmacology. 2008; 33 (3): 627-633.
  • Tapert S.F. et al. fMRI BOLD response to alcohol stimuli in alcohol dependent young women. Addictive Behaviors. 2004; 29 (1): 33-50.
  • Tapert S.F. et al. Neural response to alcohol stimuli in adolescents with alcohol use disorder. Archives of General Psychiatry. 2003; 60 (7): 727-735.
  • Teneggi V. et al. EEG power spectra and auditory P300 during free smoking and enforced smoking abstinence. Pharmacology Biochemistry and Behavior. 2004; 77 (1): 103-109.
  • Tiihonen J. et al. Acute ethanol-induced changes in cerebral blood flow. American Journal of Psychiatry. 1994; 151 (10): 1505-1508.
  • Volkow N.D. et al. Activation of orbital and medial prefrontal cortex by methylphenidate in cocaine-addicted subjects but not in controls): relevance to addiction. Journal of Neuroscience. 2005; 25 (15): 3932-3939.
  • Volkow N.D. et al. Acute effects of ethanol on regional brain glucose metabolism and transport. Psychiatry Research: Neuroimaging. 1990; 35 (1): 39-48.
  • Volkow N.D. et al. Association of methylphenidate-induced craving with changes in right striato-orbitofrontal metabolism in cocaine abusers): implications in addiction. American Journal of Psychiatry. 1999; 156 (1): 19-26.
  • Volkow N.D. et al. Brain DA D2 receptors predict reinforcing effects of stimulants in humans): replication study. Synapse. 2002; 46 (2): 79-82.
  • Volkow N.D. et al. Cerebral blood flow in chronic cocaine users): a study with positron emission tomography. The British Journal of Psychiatry. 1988; 152 (5): 641-648.
  • Volkow N.D. et al. Changes in brain glucose metabolism in cocaine dependence and withdrawal. The American Journal of Psychiatry. 1991; 148 (5): 621.
  • Volkow N.D. et al. Cognitive control of drug craving inhibits brain reward regions in cocaine abusers. Neuroimage. 2010; 49 (3): 2536-2543.
  • Volkow N.D. et al. Decreased brain metabolism in neurologically intact healthy alcoholics. The American Journal of Psychiatry. 1992; 149 (8): 1016.
  • Volkow N.D. et al. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse. 1993; 14 (2): 169-177.
  • Volkow N.D. et al. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature. 1997; 386 (6627): 830-833.
  • Volkow N.D. et al. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcoholism: Clinical and Experimental Research. 1996; 20 (9): 1594-1598.
  • Volkow N.D. et al. Dopamine increases in striatum do not elicit craving in cocaine abusers unless they are coupled with cocaine cues. Neuroimage. 2008; 39 (3): 1266-1273.
  • Volkow N.D. et al. Effects of acute alcohol intoxication on cerebral blood flow measured with PET. Psychiatry Research. 1988; 24 (2): 201-209.
  • Volkow N.D. et al. Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am J Psychiatry. 1990; 147 (6): 719-724.
  • Volkow N.D. et al. High levels of dopamine D2 receptors in unaffected members of alcoholic families): possible protective factors. Archives of General Psychiatry. 2006; 63 (9): 999-1008.
  • Volkow N.D. et al. Imaging dopamine's role in drug abuse and addiction. Neuropharmacology. 2009; 56: 3-8.
  • Volkow N.D. et al. Imaging endogenous dopamine competition with raclopride in the human brain. Synapse. 1994; 16 (4): 255-262.
  • Volkow N.D. et al. Reduced metabolism in brain "control networks" following cocaine-cues exposure in female cocaine abusers. PloS one. 2011; 6 (2): e16573.
  • Volkow N.D. et al. Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D2 receptors. Journal of Pharmacology and Experimental Therapeutics. 1999; 291 (1): 409-415.
  • Volkow N.D. et al. Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature. 1997; 386 (6627): 827-830.
  • Volkow N.D., Fowler J.S. Addiction, a disease of compulsion and drive): involvement of the orbitofrontal cortex. Cerebral Cortex. 2000; 10 (3): 318-325.
  • Volkow N.D., Fowler J.S., Wang G.J. Imaging studies on the role of dopamine in cocaine reinforcement and addiction in humans. Journal of Psychopharmacology. 1999; 13 (4): 337-345.
  • Wang G.J. et al. Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal. Neuropsychopharmacology. 1997; 16 (2): 174-182.
  • Warren C.A., McDonough B.E. Event-related brain potentials as indicators of smoking cue-reactivity. Clinical Neurophysiology. 1999; 110 (9): 1570-1584.
  • Waters A.J. et al. Attentional shifts to smoking cues in smokers. Addiction. 2003; 98 (10): 1409-1417.
  • Wexler B.E. et al. Functional magnetic resonance imaging of cocaine craving. American Journal of Psychiatry. 2001; 158 (1): 86-95.
  • Wrase J. et al. Development of alcohol-associated cues and cue-induced brain activation in alcoholics. European Psychiatry. 2002; 17 (5): 287-291.
Еще
Статья научная