Некоторые соотношения в полиномиальных кольцах, связанные с полиномиальными отображениями плоскости (часть 2)
Автор: Сержкин В.Н.
Журнал: Международный журнал гуманитарных и естественных наук @intjournal
Рубрика: Физико-математические науки
Статья в выпуске: 9-2 (108), 2025 года.
Бесплатный доступ
В статье приводится доказательство теоремы, анонсированной в работе 4. Кроме того приводятся новые соотношения для некоторых полиномов от n переменных над полем комплексных чисел. Эти полиномы связаны с полиномиальными отображениями плоскости с постоянным якобианом. Как известно, вопрос об обратимости полиномиального отображения F с ненулевым постоянным якобианом det J(F), был сформулирован Келером в 1939 году. На основании свойств данных полиномов получено необходимое и достаточное условие постоянности якобиана полиномиального отображения в двумерном случае.
Полиномиальные отображения плоскости, проблема якобиана, свойства полиномов от n переменных
Короткий адрес: https://sciup.org/170211312
IDR: 170211312 | DOI: 10.24412/2500-1000-2025-9-2-85-100