Нестационарная связанная осесимметричная задача термоупругости для жестко закрепленной круглой пластины

Бесплатный доступ

Построено новое замкнутое решение осесимметричной динамической задачи классической (CTE) теории термоупругости для жестко закрепленной круглой изотропной пластины в случае изменения температуры на ее лицевых поверхностях (граничные условия 1-го рода). Математическая формулировка рассматриваемой задачи включает линейные уравнения теплопроводности и равновесия в пространственной постановке, в предположении, что в исследуемых конструкциях можно пренебречь их инерционными упругими характеристиками. При построении общего решения связанных несамосопряженных уравнений используется математический аппарат разделения переменных в виде конечных интегральных преобразований: Ханкеля по радиальной координате и биортогонального преобразования (КИП) по аксиальной переменной. На каждом этапе исследования выполняется процедура приведения граничных условий к виду, позволяющему применить соответствующее преобразование. Особенностью данного решения является применение КИП, основанного на многокомпонентном соотношении собственных векторов-функций двух однородных краевых задач. Важным моментом в процедуре структурного алгоритма является выделение сопряженного оператора, без которого невозможно осуществить решение несамосопряженных линейных задач математической физики. Данное преобразование является наиболее эффективным методом исследования подобных краевых задач. Построенные расчетные соотношения дают возможность определить напряженно-деформированное состояние и характер распределения температурного поля в жестко закрепленной круглой изотропной пластине при произвольном по времени внешнем температурном воздействии. Численный анализ прочностных характеристик бетонной конструкции показывает, что в период действия нестационарной нагрузки наблюдаются максимальные значения механических напряжений. В дальнейшем, при постоянной температурном режиме, в результате прогрева всей пластины перемещения увеличиваются, а напряжения падают.

Еще

Круглая пластина, классическая теория термоупругости, нестационарное температурное воздействие, биортогональные конечные интегральные преобразования

Короткий адрес: https://sciup.org/146281965

IDR: 146281965   |   DOI: 10.15593/perm.mech/2019.4.18

Список литературы Нестационарная связанная осесимметричная задача термоупругости для жестко закрепленной круглой пластины

  • Подстригач Я.С. Теплоупругость тел неоднородной структуры. - М.: Наука, 1984. - 368 с.
  • Боли Б. Уэйнер Дж. Теория температурных напряжений. - М.: Мир, 1964. - 520 c.
  • Новацкий В. Динамические задачи термоупругости. - М.: Мир, 1970. - 256 с.
  • Радаев Ю.Н., Таранова М.В. Волновые числа термоупругих волн в волноводе с теплообменом на боковой стенке // Вестн. Самар. гос. техн. ун-та. Сер. Физ.-мат. науки. - 2011. - № 2 (23). - С. 53-61.
  • Шашков А.Г., Бубнов В.А., Яновский С.Ю. Волновые явления теплопроводности. Системно-структурный подход. - Изд. 2-е, доп. - М.: Едиториал УРСС, 2004. - 296 с.
Статья научная