Нейросетевые декодеры линейных блочных кодов
Автор: Думачев Владислав Николаевич, Копылов Алексей Николаевич, Бутов Владислав Вячеславович
Рубрика: Краткие сообщения
Статья в выпуске: 1 т.12, 2019 года.
Бесплатный доступ
Работа посвящена нейросетевым декодерам линейных блочных кодов. Рассмотрены аналитические методы расчета синаптических весов, базирующиеся на использовании порождающей и проверочной матриц. Показано, что для построения нейросетевого декодера на основе проверочной матрицы достаточно четрырехслойной нейронной сети прямого распространения. Определены функции активации и весовые матрицы для каждого из слоев, а также количество весовых коэффициентов нейросетвого декодера. Рассмотрен пример исправления ошибок приведенным декодером при использовании кода БЧХ. В качестве частного случая нейросетевого декодера, построенного на основе проверочной матрицы, предложена модель для декодирования кодов Хэмминга. Данная модель представляет собой двухслойную нейронную сеть прямого распространения с числом нейронов, равным длине кодового слова, и числом весовых коэффициентов, равным квадрату длины кодового слова. Приведены графики зависимостей количества синаптических связей нейросетевых декодеров, построенных на основе порождающей и проверочной матриц, от числа информационных бит и числа исправляемых ошибок.
Помехоустойчивое кодирование, нейросетевые декодеры, нейросетевая классификация
Короткий адрес: https://sciup.org/147232919
IDR: 147232919 | DOI: 10.14529/mmp190111