New Mean-Variance Gamma Method for Automatic Gamma Correction
Автор: Meriama Mahamdioua, Mohamed Benmohammed
Журнал: International Journal of Image, Graphics and Signal Processing(IJIGSP) @ijigsp
Статья в выпуске: 3 vol.9, 2017 года.
Бесплатный доступ
Gamma correction is an interesting method for improving image quality in uncontrolled illumination conditions case. This paper presents a new technique called Mean-Variance Gamma (MV-Gamma), which is used for estimating automatically the amount of gamma correction, in the absence of any information about environmental light and imaging device. First, we valued every row and column of image pixels matrix as a random variable, where we can calculate a feature vector of means/variances of image rows and columns. After that, we applied a range of inverse gamma values on the input image, and we calculated the feature vector, for each inverse gamma value, to compare it with the target one defined from statistics of good-light images. The inverse gamma value which gave a minimum Euclidean distance between the image feature vector and the target one was selected. Experiments results, on various test images, confirmed the superiority of the proposed method compared with existing tested ones.
Gamma value estimation, Correction of gamma, Improving image quality, Mean, Variance
Короткий адрес: https://sciup.org/15014172
IDR: 15014172
Список литературы New Mean-Variance Gamma Method for Automatic Gamma Correction
- 'Image Quality Enhancement Using Pixel-Wise Gamma Correction via SVM Classifier', IJE Transactions B: Applications, Vol. 24, (4), December 2011.
- Tsai, C.M.: 'Adaptive Local Power-Law Transformation for Color Image Enhancement', Applied Mathematics & Information Sciences, 7, (5), 2019-2026 (2013).
- Patel, O., Yogendra P. S., et al.: 'A comparative study of histogram equalization based image enhancement techniques for brightness preservation and contrast enhancement', Signal & Image Processing : An International Journal (SIPIJ), Vol.4, (5), October 2013.
- Nungsanginla, L., Mukesh, K., and Rohini, S.: 'Contrast Enhancement Techniques using Histogram Equalization: A Survey', International Journal of Current Engineering and Technology, 2014, Vol.4, (3).
- Hany, F.: ' Blind Inverse Gamma Correction', IEEE Transactions On Image Processing, Vol. 10, NO. 10, October 2001.
- Yihua, S., Jinfeng, Y., and Renbiao, W.: 'Reducing Illumination Based on Nonlinear Gamma Correction', IEEE. Int. Conf. on Imag. Proce., San Antonio, pp. 529-532.
- Asadi Amiri, S., Hassampour, H.: 'A Preprocessing Approach For Image Analysis Using Gamma Correction', International Journal of Computer Applications (0975 – 8887) Volume 38– No.12, January 2012.
- Shi, J., Cai, Y.: 'A novel image enhancement method using local gamma correction with three-level thresholding', Proc. IEEE Joint. Int. Conf. Information Technology and Artificial Intelligence, vol. 1, Chongqing, China, pp. 374–378, Aug. 2011.
- Gagandeep, S., Sarbjeet, S.: 'An Enhancement of Images Using Recursive Adaptive Gamma Correction', Inter. Jour. of Comp. Scien. and Infor. Tech. (IJCSIT), Vol. 6 (4) , 2015, 3904-3909.
- Yonghun, S., Soowoong, J., Sangkeun, L.: 'Efficient naturalness restoration for nonuniform illumination images', IET Image Process, 2015, Vol. 9, (8), pp. 662 – 671.
- Amandeep, K.: 'Image Enhancement Using Recursive Adaptive Gamma Correction', Inter. Jour. of Innov. in Engin. and Techn. (IJIET), 2014, Vol. 4, (3).
- Parambir, S., Banga, V.K.: 'Dynamic Non-Linear Enhancement using Gamma Correction and Dynamic Restoration', International Journal of Computer Applications, February 2014, Vol. 87, No.12.
- Varghese, A.K, Nisha, J.S.: 'A Novel Approach for Image Enhancement Preserving Brightness Level using Adaptive Gamma Correction', Intern. Jour. of Engin. Resea. & Tech. (IJERT) ISSN: 2278-0181, Vol. 4 Issue 07, July-2015.
- Tan, X., Triggs, B.: 'Enhanced Local Texture Feature Sets for Face Recognition under Difficult Lighting Conditions', IEEE Transactions on Image Processing, Vol.19, 6, pp.1635 - 1650.
- Al-Ameen, Z., Sulong, G., Rehman, A., et al.: 'An innovative technique for contrast enhancement of computed tomography images using normalized gamma-corrected contrast-limited adaptive histogram equalization', Journal on Advances in Signal Processing, 2015, DOI: 10.1186/s13634-015-0214-1.
- Jung, J., Ho, Y.: 'Low-bit depth-high-dynamic range image generation by blending differently exposed images', IET Image Process., 2013, Vol. 7, Iss. 6, pp. 606–615.
- Fedias, M., Saigaa, D.: 'A new approach based on mean and standard deviation for authentication system of face', 2010, International Review on Computers and Software, Vol. 5, (3).
- Gonzalez, R.C., Woods, R.E.: 'Digital Image Processing' (Prentice Hall, 2008, 3rd Ed.).
- Chiu, Y.S., Cheng, F.C., and Huang, S.C.: 'Efficient Contrast Enhancement Using Adaptive Gamma Correction and Cumulative Intensity Distribution', Proc. of IEEE Int. Conf. on Syst. Manag. and Cybernetics, Anchorage, AK. 2011, Oct, p. 2946–50.
- Huang, S.C., Cheng, F.C., and Chiu, Y.S.: 'Efficient Contrast Enhancement Using Adaptive Gamma Correction With Weighting Distribution', IEEE Transactions On Image Processing, Vol. 22, No. 3, March 2013.
- Garg, G., Sharma, P.: 'An Analysis of Contrast Enhancement using Activation Functions', International Journal o f Hybrid Information Technology, 2014, Vol.7, No.5, pp.2.
- Wang, Z., Bovik, A.C., et al.: 'Image Quality Assessment: From Error Measurement to Structural Similarity', IEEE Transactions On Image Processing, Vol. 13, No. 1, January 2004.
- http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html. Time accessed: September 2016.
- Lee, K.C., Ho J., Kriegman, D.: 'Acquiring Linear Subspaces for Face Recognition under Variable Lighting', IEEE Trans. Pattern Anal. Mach. Intelligence, 2005, vol.27, No 5, pp. 684-698.
- http://www.cs.dartmouth.edu/farid/#jumpTo. Time accessed: September 2016
- Tarun, A. Arora, Gurpadam, B. Singh, Mandeep C. Kaur: 'Evaluation of a New Integrated Fog Removal Algorithm IDCP with Airlight', I.J. Image, Graphics and Signal Processing, 2014, 8, 12-18, DOI: 10.5815/ ijigsp.2014.08.02